Skip to main content

Material Aspects of Micro- and Nanoelectromechanical Systems

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

  • 15k Accesses

Abstract

One of the more significant technological achievements during the last 20 years has been the development of MEMS and its new offshoot, NEMS. These developments were made possible by significant advancements in the materials and processing technologies used in the fabrication of MEMS and NEMS devices. While initial developments capitalized on a mature Si infrastructure built for the integrated circuit (IC) industry, recent advances have come about using materials and processes not associated with IC fabrication, a trend that is likely to continue as new application areas emerge.

A well-rounded understanding of MEMS and NEMS technology requires a basic knowledge of the materials used to construct the devices, since material properties often govern device performance and dictate fabrication approaches. An understanding of the materials used in MEMS and NEMS involves an understanding of material systems, since such devices are rarely constructed of a single material but rather a collection of materials working in conjunction with each other to provide critical functions. It is from this perspective that the following chapter is constructed. A preview of the materials selected for inclusion in this chapter is presented in Table 11.1. It should be clear from this table that this chapter is not a summary of all materials used in MEMS and NEMS, as such a work would itself constitute a text of significant size. It does, however, present a selection of some of the more important material systems, and especially those that illustrate the importance of viewing MEMS and NEMS in terms of material systems.

Table 11.1 Distinguishing characteristics and application examples of selected materials for MEMS and NEMS

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

atomic force microscope

AFM:

atomic force microscopy

CMOS:

complementary metal–oxide–semiconductor

CVD:

chemical vapor deposition

DC:

direct-current

DRIE:

deep reactive ion etching

FET:

field-effect transistor

HF:

hydrofluoric

IC:

integrated circuit

LPCVD:

low-pressure chemical vapor deposition

MEMS:

microelectromechanical system

NEMS:

nanoelectromechanical system

PECVD:

plasma-enhanced chemical vapor deposition

PMMA:

poly(methyl methacrylate)

PZT:

lead zirconate titanate

RF:

radiofrequency

RIE:

reactive-ion etching

SEM:

scanning electron microscope

SEM:

scanning electron microscopy

SOG:

spin-on-glass

SOI:

silicon-on-insulator

References

  1. C.S. Smith: Piezoresistive effect in germanium and silicon, Phys. Rev. 94, 1–10 (1954)

    Article  Google Scholar 

  2. A.N. Cleland, M.L. Roukes: Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals, Appl. Phys. Lett. 69, 2653–2655 (1996)

    Article  Google Scholar 

  3. D.W. Carr, H.G. Craighead: Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography, J. Vac. Sci. Technol. B 15, 2760–2763 (1997)

    Article  Google Scholar 

  4. T. Kamins: Polycrystalline Silicon for Integrated Circuits and Displays, 2nd edn. (Kluwer, Boston 1988)

    Book  Google Scholar 

  5. J.J. McMahon, J.M. Melzak, C.A. Zorman, J. Chung, M. Mehregany: Deposition and characterization of in-situ boron doped polycrystalline silicon films for microelectromechanical systems applications, Mater. Res. Symp. Proc. 605, 31–36 (2000)

    Article  Google Scholar 

  6. L. Cao, T.S. Kin, S.C. Mantell, D. Polla: Simulation and fabrication of piezoresistive membrane type MEMS strain sensors, Sens. Actuators 80, 273–279 (2000)

    Article  Google Scholar 

  7. H. Guckel, T. Randazzo, D.W. Burns: A simple technique for the determination of mechanical strain in thin films with application to polysilicon, J. Appl. Phys. 57, 1671–1675 (1983)

    Article  Google Scholar 

  8. R.T. Howe, R.S. Muller: Stress in polysilicon and amorphous silicon thin films, J. Appl. Phys. 54, 4674–4675 (1983)

    Article  Google Scholar 

  9. X. Zhang, T.Y. Zhang, M. Wong, Y. Zohar: Rapid thermal annealing of polysilicon thin films, J. Microelectromech. Syst. 7, 356–364 (1998)

    Article  Google Scholar 

  10. J. Yang, H. Kahn, A.-Q. He, S.M. Phillips, A.H. Heuer: A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: The multipoly process, J. Microelectromech. Syst. 9, 485–494 (2000)

    Article  Google Scholar 

  11. P. Gennissen, M. Bartek, P.J. French, P.M. Sarro: Bipolar-compatible epitaxial poly for smart sensors: Stress minimization and applications, Sens. Actuators A 62, 636–645 (1997)

    Article  Google Scholar 

  12. P. Lange, M. Kirsten, W. Riethmuller, B. Wenk, G. Zwicker, J.R. Morante, F. Ericson, J.A. Schweitz: Thick polycrystalline silicon for surface-micromechanical applications: deposition, structuring, and mechanical characterization, Sens. Actuators A 54, 674–678 (1996)

    Article  Google Scholar 

  13. S. Greek, F. Ericson, S. Johansson, M. Furtsch, A. Rump: Mechanical characterization of thick polysilicon films: Youngʼs modulus and fracture strength evaluated with microstructures, J. Micromech. Microeng. 9, 245–251 (1999)

    Article  Google Scholar 

  14. K. Funk, H. Emmerich, A. Schilp, M. Offenberg, R. Neul, F. Larmer: A surface micromachined silicon gyroscope using a thick polysilicon layer, Proc. 12th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 1999) pp. 57–60

    Google Scholar 

  15. T. Abe, M.L. Reed: Low strain sputtered polysilicon for micromechanical structures, Proc. 9th Int. Workshop Microelectromech. Syst. (IEEE, Piscataway 1996) pp. 258–262

    Google Scholar 

  16. K. Honer, G.T.A. Kovacs: Integration of sputtered silicon microstructures with pre-fabricated CMOS circuitry, Sens. Actuators A 91, 392–403 (2001)

    Google Scholar 

  17. J. Gaspar, T. Adrega, V. Chu, J.P. Conde: Thin-film paddle microresonators with high quality factors fabricated at temperatures below 110 °C, Proc. 18th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 2005) pp. 125–128

    Google Scholar 

  18. R. Anderson, R.S. Muller, C.W. Tobias: Porous polycrystalline silicon: A new material for MEMS, J. Microelectromech. Syst. 3, 10–18 (1994)

    Article  Google Scholar 

  19. W. Lang, P. Steiner, H. Sandmaier: Porous silicon: A novel material for microsystems, Sens. Actuators A 51, 31–36 (1995)

    Article  Google Scholar 

  20. R. He, C.J. Kim: On-chip hermetic packaging enabled by post-deposition electrochemical etching of polysilicon, Proc. 18th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 2005) pp. 544–547

    Google Scholar 

  21. S.K. Ghandhi: VLSI Fabrication Principles – Silicon and Gallium Arsenide (Wiley, New York 1983)

    Google Scholar 

  22. W.A. Pilskin: Comparison of properties of dielectric films deposited by various methods, J. Vac. Sci. Technol. 21, 1064–1081 (1977)

    Article  Google Scholar 

  23. J.S. Danel, F. Michel, G. Delapierre: Micromachining of quartz and its application to an acceleration sensor, Sens. Actuators A 21–23, 971–977 (1990)

    Google Scholar 

  24. A. Yasseen, J.D. Cawley, M. Mehregany: Thick glass film technology for polysilicon surface micromachining, J. Microelectromech. Syst. 8, 172–179 (1999)

    Article  Google Scholar 

  25. R. Liu, M.J. Vasile, D.J. Beebe: The fabrication of nonplanar spin-on glass microstructures, J. Microelectromech. Syst. 8, 146–151 (1999)

    Article  Google Scholar 

  26. B. Folkmer, P. Steiner, W. Lang: Silicon nitride membrane sensors with monocrystalline transducers, Sens. Actuators A 51, 71–75 (1995)

    Article  Google Scholar 

  27. M. Sekimoto, H. Yoshihara, T. Ohkubo: Silicon nitride single-layer x-ray mask, J. Vac. Sci. Technol. 21, 1017–1021 (1982)

    Article  Google Scholar 

  28. D.J. Monk, D.S. Soane, R.T. Howe: Enhanced removal of sacrificial layers for silicon surface micromachining, 7th Int. Conf. Solid State Sens. Actuators, Technical Digest (Institute of Electrical Engineers of Japan, Tokyo 1993) pp. 280–283

    Google Scholar 

  29. P.J. French, P.M. Sarro, R. Mallee, E.J.M. Fakkeldij, R.F. Wolffenbuttel: Optimization of a low-stress silicon nitride process for surface micromachining applications, Sens. Actuators A 58, 149–157 (1997)

    Article  Google Scholar 

  30. B. Li, B. Xiong, L. Jiang, Y. Zohar, M. Wong: Germanium as a versatile material for low-temperature micromachining, J. Microelectromech. Syst. 8, 366–372 (1999)

    Article  Google Scholar 

  31. A. Franke, D. Bilic, D.T. Chang, P.T. Jones, T.J. King, R.T. Howe, C.G. Johnson: Post-CMOS integration of germanium microstructures, Proc. 12th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 1999) pp. 630–637

    Google Scholar 

  32. A.E. Franke, Y. Jiao, M.T. Wu, T.J. King, R.T. Howe: Post-CMOS modular integration of poly-SiGe microstructures using poly-Ge sacraficial layers, Solid State Sens. Actuator Workshop, Technical Digest (Transducers Research Foundation, Hilton Head 2000) pp. 18–21

    Google Scholar 

  33. S. Sedky, P. Fiorini, M. Caymax, S. Loreti, K. Baert, L. Hermans, R. Mertens: Structural and mechanical properties of polycrystalline silicon germanium for micromachining applications, J. Microelectromech. Syst. 7, 365–372 (1998)

    Article  Google Scholar 

  34. J.M. Heck, C.G. Keller, A.E. Franke, L. Muller, T.-J. King, R.T. Howe: High aspect ratio polysilicon-germanium microstructures, Proc. 10th Int. Conf. Solid State Sens. Actuators (Institute of Electrical Engineers of Japan, Tokyo 1999) pp. 328–334

    Google Scholar 

  35. P. Van Gerwen, T. Slater, J.B. Chevrier, K. Baert, R. Mertens: Thin-film boron-doped polycrystalline silicon70%-germanium30% for thermopiles, Sens. Actuators A 53, 325–329 (1996)

    Article  Google Scholar 

  36. D. Hyman, J. Lam, B. Warneke, A. Schmitz, T.Y. Hsu, J. Brown, J. Schaffner, A. Walson, R.Y. Loo, M. Mehregany, J. Lee: Surface micromachined RF MEMS switches on GaAs substrates, Int. J. Radio Freq. Microw. Commun. Eng. 9, 348–361 (1999)

    Google Scholar 

  37. C. Chang, P. Chang: Innovative micromachined microwave switch with very low insertion loss, Sens. Actuators 79, 71–75 (2000)

    Article  Google Scholar 

  38. M.F. Aimi, M.P. Rao, N.C. MacDonald, A.S. Zuruzi, D.P. Bothman: High-aspect-ratio bulk micromachining of Ti, Nat. Mater. 3, 103–105 (2004)

    Article  Google Scholar 

  39. C.L. Shih, B.K. Lai, H. Kahn, S.M. Phillips, A.H. Heuer: A robust co-sputtering fabrication procedure for TiNi shape memory alloys for MEMS, J. Microelectromech. Syst. 10, 69–79 (2001)

    Article  Google Scholar 

  40. G. Hahm, H. Kahn, S.M. Phillips, A.H. Heuer: Fully microfabricated silicon spring biased shape memory actuated microvalve, Solid State Sens. Actuator Workshop, Technical Digest (Transducers Research Foundation, Hilton Head Island 2000) pp. 230–233

    Google Scholar 

  41. S.D. Leith, D.T. Schwartz: High-rate through-mold electrodeposition of thick (> 200 micron) NiFe MEMS components with uniform composition, J. Microelectromech. Syst. 8, 384–392 (1999)

    Article  Google Scholar 

  42. N. Rajan, M. Mehregany, C.A. Zorman, S. Stefanescu, T. Kicher: Fabrication and testing of micromachined silicon carbide and nickel fuel atomizers for gas turbine engines, J. Microelectromech. Syst. 8, 251–257 (1999)

    Article  Google Scholar 

  43. T. Pornsin-Sirirak, Y.C. Tai, H. Nassef, C.M. Ho: Titanium-alloy MEMS wing technology for a microaerial vehicle application, Sens. Actuators A 89, 95–103 (2001)

    Article  Google Scholar 

  44. C.R. Stoldt, C. Carraro, W.R. Ashurst, D. Gao, R.T. Howe, R. Maboudian: A low temperature CVD process for silicon carbide MEMS, Sens. Actuators A 97/98, 410–415 (2002)

    Article  Google Scholar 

  45. M. Eickhoff, H. Moller, G. Kroetz, J. von Berg, R. Ziermann: A high temperature pressure sensor prepared by selective deposition of cubic silicon carbide on SOI substrates, Sens. Actuators 74, 56–59 (1999)

    Article  Google Scholar 

  46. Y.T. Yang, K.L. Ekinci, X.M.H. Huang, L.M. Schiavone, M.L. Roukes, C.A. Zorman, M. Mehregany: Monocrystalline silicon carbide nanoelectromechanical systems, Appl. Phys. Lett. 78, 162–164 (2001)

    Article  Google Scholar 

  47. D. Young, J. Du, C.A. Zorman, W.H. Ko: High-temperature single crystal 3C-SiC capacitive pressure sensor, IEEE Sens. J. 4, 464–470 (2004)

    Article  Google Scholar 

  48. C.A. Zorman, S. Rajgolpal, X.A. Fu, R. Jezeski, J. Melzak, M. Mehregany: Deposition of polycrystalline 3C-SiC films on 100 mm-diameter (100) Si wafers in a large-volume LPCVD furnace, Electrochem. Solid State Lett. 5, G99–G101 (2002)

    Article  Google Scholar 

  49. I. Behrens, E. Peiner, A.S. Bakin, A. Schlachetzski: Micromachining of silicon carbide on silicon fabricated by low-pressure chemical vapor deposition, J. Micromech. Microeng. 12, 380–384 (2002)

    Article  Google Scholar 

  50. C.A. Zorman, S. Roy, C.H. Wu, A.J. Fleischman, M. Mehregany: Characterization of polycrystalline silicon carbide films grown by atmospheric pressure chemical vapor deposition on polycrystalline silicon, J. Mater. Res. 13, 406–412 (1996)

    Article  Google Scholar 

  51. C.H. Wu, C.H. Zorman, M. Mehregany: Growth of polycrystalline SiC films on SiO_2 and Si_3N_4 by APCVD, Thin Solid Films 355/356, 179–183 (1999)

    Article  Google Scholar 

  52. P. Sarro: Silicon carbide as a new MEMS technologyctuators, Sens. Actuators A 82, 210–218 (2000)

    Article  Google Scholar 

  53. N. Ledermann, J. Baborowski, P. Muralt, N. Xantopoulos, J.M. Tellenbach: Sputtered silicon carbide thin films as protective coatings for MEMS applications, Surf. Coat. Technol. 125, 246–250 (2000)

    Article  Google Scholar 

  54. X.A. Fu, R. Jezeski, C.A. Zorman, M. Mehregany: Use of deposition pressure to control the residual stress in polycrystalline SiC films, Appl. Phys. Lett. 84, 341–343 (2004)

    Article  Google Scholar 

  55. J. Trevino, X.A. Fu, M. Mehregany, C. Zorman: Low-stress, heavily-doped polycrystalline silicon carbide for MEMS applications, Proc. 18th Int. Conf. Microelectromech. Syst. (IEEE, Piscataway 2005) pp. 451–454

    Google Scholar 

  56. R.S. Okojie, A.A. Ned, A.D. Kurtz: Operation of a 6H-SiC pressure sensor at 500 °C, Sens. Actuators A 66, 200–204 (1998)

    Article  Google Scholar 

  57. K. Lohner, K.S. Chen, A.A. Ayon, M.S. Spearing: Microfabricated silicon carbide microengine structures, Mater. Res. Soc. Symp. Proc. 546, 85–90 (1999)

    Article  Google Scholar 

  58. K.O. Min, S. Tanaka, M. Esashi: Micro/nano glass press molding using silicon carbide molds fabricated by silicon lost molding, Proc. 18th Int. Conf. Microelectromech. Syst. (IEEE, Miami 2005) pp. 475–478

    Google Scholar 

  59. S. Tanaka, S. Sugimoto, J.-F. Li, R. Watanabe, M. Esashi: Silicon carbide micro-reaction-sintering using micromachined silicon molds, J. Microelectromech. Syst. 10, 55–61 (2001)

    Article  Google Scholar 

  60. L.A. Liew, W. Zhang, V.M. Bright, A. Linan, M.L. Dunn, R. Raj: Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique, Sens. Actuators A 89, 64–70 (2001)

    Article  Google Scholar 

  61. A.J. Fleischman, S. Roy, C.A. Zorman, M. Mehregany: Polycrystalline silicon carbide for surface micromachining, Proc. 9th Int. Workshop Microelectromech. Syst. (IEEE, San Diego 1996) pp. 234–238

    Google Scholar 

  62. A.J. Fleischman, X. Wei, C.A. Zorman, M. Mehregany: Surface micromachining of polycrystalline SiC deposited on SiO_2 by APCVD, Mater. Sci. Forum 264–268, 885–888 (1998)

    Article  Google Scholar 

  63. G. Beheim, C.S. Salupo: Deep RIE process for silicon carbide power electronics and MEMS, Mater. Res. Soc. Symp. Proc. 622, T8.8.1–T8.8.6 (2000)

    Article  Google Scholar 

  64. A. Yasseen, C.H. Wu, C.A. Zorman, M. Mehregany: Fabrication and testing of surface micromachined polycrystalline SiC micromotors, Electron. Device Lett. 21, 164–166 (2000)

    Article  Google Scholar 

  65. X. Song, S. Rajgolpal, J.M. Melzak, C.A. Zorman, M. Mehregany: Development of a multilayer SiC surface micromachining process with capabilities and design rules comparable with conventional polysilicon surface micromachining, Mater. Sci. Forum 389–393, 755–758 (2001)

    Google Scholar 

  66. D. Gao, M.B. Wijesundara, C. Carraro, R.T. Howe, R. Maboudian: Recent progress toward and manufacturable polycrystalline SiC surface micromachining technology, IEEE Sens. J. 4, 441–448 (2004)

    Article  Google Scholar 

  67. T. Shibata, Y. Kitamoto, K. Unno, E. Makino: Micromachining of diamond film for MEMS applications, J. Microelectromech. Syst. 9, 47–51 (2000)

    Article  Google Scholar 

  68. H. Bjorkman, P. Rangsten, P. Hollman, K. Hjort: Diamond replicas from microstructured silicon masters, Sens. Actuators 73, 24–29 (1999)

    Article  Google Scholar 

  69. P. Rangsten, H. Bjorkman, K. Hjort: Microfluidic components in diamond, Proc. 10th Int. Conf. Solid State Sens. Actuators (IEEE, Sendai 1999) pp. 190–193

    Google Scholar 

  70. H. Bjorkman, P. Rangsten, K. Hjort: Diamond microstructures for optical microelectromechanical systems, Sens. Actuators 78, 41–47 (1999)

    Article  Google Scholar 

  71. M. Aslam, D. Schulz: Technology of diamond microelectromechanical systems, Proc. 8th Int. Conf. Solid State Sens. Actuators (IEEE, Stockholm 1995) pp. 222–224

    Google Scholar 

  72. R. Ramesham: Fabrication of diamond microstructures for microelectromechanical systems (MEMS) by a surface micromachining process, Thin Solid Films 340, 1–6 (1999)

    Article  Google Scholar 

  73. X. Yang, J.M. Yang, Y.C. Tai, C.M. Ho: Micromachined membrane particle filters, Sens. Actuators 73, 184–191 (1999)

    Article  Google Scholar 

  74. X.D. Wang, G.D. Hong, J. Zhang, B.L. Lin, H.Q. Gong, W.Y. Wang: Precise patterning of diamond films for MEMS application, J. Mater. Process. Technol. 127, 230–233 (2002)

    Article  Google Scholar 

  75. A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemire, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, M.Q. Ding: Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices, Diam. Relat. Mater. 10, 1952–1961 (2001)

    Article  Google Scholar 

  76. X. Xiao, J. Birrell, J.E. Gerbi, O. Auciello, J.A. Carlisle: Low temperature growth of ultrananocrystalline diamond, J. Appl. Phys. 96, 2232–2239 (2004)

    Article  Google Scholar 

  77. T.A. Friedmann, J.P. Sullivan, J.A. Knapp, D.R. Tallant, D.M. Follstaedt, D.L. Medlin, P.B. Mirkarimi: Thick stress-free amorphous-tetrahedral carbon films with hardness near that of diamond, Appl. Phys. Lett. 71, 3820–3822 (1997)

    Article  Google Scholar 

  78. J.P. Sullivan, T.A. Friedmann, K. Hjort: Diamond and amorphous carbon MEMS, MRS Bulletin 26, 309–311 (2001)

    Article  Google Scholar 

  79. J.R. Webster, C.W. Dyck, J.P. Sullivan, T.A. Friedmann, A.J. Carton: Performance of amorphous diamond RF MEMS capacitive switch, Electron. Lett. 40, 43–44 (2004)

    Article  Google Scholar 

  80. K. Hjort, J. Soderkvist, J.-A. Schweitz: Galium arsenide as a mechanical material, J. Micromech. Microeng. 4, 1–13 (1994)

    Article  Google Scholar 

  81. K. Hjort: Sacrificial etching of III–V compounds for micromechanical devices, J. Micromech. Microeng. 6, 365–370 (1996)

    Article  Google Scholar 

  82. K. Fobelets, R. Vounckx, G. Borghs: A GaAs pressure sensor based on resonant tunnelling diodes, J. Micromech. Microeng. 4, 123–128 (1994)

    Article  Google Scholar 

  83. A. Dehe, K. Fricke, H.L. Hartnagel: Infrared thermopile sensor based on AlGaAs-GaAs micromachining, Sens. Actuators A 46/47, 432–436 (1995)

    Google Scholar 

  84. A. Dehe, J. Peerlings, J. Pfeiffer, R. Riemenschneider, A. Vogt, K. Streubel, H. Kunzel, P. Meissner, H.L. Hartnagel: III–V compound semiconductor micromachined actuators for long resonator tunable Fabry-Perot detectors, Sens. Actuators A 68, 365–371 (1998)

    Article  Google Scholar 

  85. T. Lalinsky, S. Hascik, Z. Mozolova, E. Burian, M. Drzik: The improved performance of GaAs micromachined power sensor microsystem, Sens. Actuators 76, 241–246 (1999)

    Article  Google Scholar 

  86. T. Lalinsky, E. Burian, M. Drzik, S. Hascik, Z. Mozolova, J. Kuzmik, Z. Hatzopoulos: Performance of GaAs micromachined microactuator, Sens. Actuators 85, 365–370 (2000)

    Article  Google Scholar 

  87. H.X. Tang, X.M.H. Huang, M.L. Roukes, M. Bichler, W. Wegscheider: Two-dimensional electron-gas actuation and transduction for GaAs nanoelectromechanical systems, Appl. Phys. Lett. 81, 3879–3881 (2002)

    Article  Google Scholar 

  88. T.S. Tighe, J.M. Worlock, M.L. Roukes: Direct thermal conductance measurements on suspended monocrystalline nanostructure, Appl. Phys. Lett. 70, 2687–2689 (1997)

    Article  Google Scholar 

  89. J. Miao, B.L. Weiss, H.L. Hartnagel: Micromachining of three-dimensional GaAs membrane structures using high-energy nitrogen implantation, J. Micromech. Microeng. 13, 35–39 (2003)

    Article  Google Scholar 

  90. C. Seassal, J.L. Leclercq, P. Viktorovitch: Fabrication of inp-based freestanding microstructures by selective surface micromachining, J. Micromech. Microeng. 6, 261–265 (1996)

    Article  Google Scholar 

  91. J. Leclerq, R.P. Ribas, J.M. Karam, P. Viktorovitch: III–V micromachined devices for microsystems, Microelectron. J. 29, 613–619 (1998)

    Article  Google Scholar 

  92. H. Yamaguchi, R. Dreyfus, S. Miyashita, Y. Hirayama: Fabrication and elastic properties of InAs freestanding structures based on InAs/GaAs(111) a heteroepitaxial systems, Physica E 13, 1163–1167 (2002)

    Article  Google Scholar 

  93. C. Lee, T. Itoh, T. Suga: Micromachined piezoelectric force sensors based on PZT thin films, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 553–559 (1996)

    Article  Google Scholar 

  94. B. Xu, L.E. Cross, J.J. Bernstein: Ferroelectric and antiferroelectric films for microelectromechanical systems applications, Thin Solid Films 377/378, 712–718 (2000)

    Article  Google Scholar 

  95. S.P. Beeby, A. Blackburn, N.M. White: Processing of PZT piezoelectric thick films on silicon for microelectromechanical systems, J. Micromech. Microeng. 9, 218–229 (1999)

    Article  Google Scholar 

  96. C. Shearwood, M.A. Harradine, T.S. Birch, J.C. Stevens: Applications of polyimide membranes to MEMS technology, Microelectron. Eng. 30, 547–550 (1996)

    Article  Google Scholar 

  97. F. Jiang, G.B. Lee, Y.C. Tai, C.M. Ho: A flexible micromachine-based shear-stress sensor array and its application to separation-point detection, Sens. Actuators 79, 194–203 (2000)

    Article  Google Scholar 

  98. D. Memmi, V. Foglietti, E. Cianci, G. Caliano, M. Pappalardo: Fabrication of capacitive micromechanical ultrasonic transducers by low-temperature process, Sens. Actuators A 99, 85–91 (2002)

    Article  Google Scholar 

  99. A. Bagolini, L. Pakula, T.L.M. Scholtes, H.T.M. Pham, P.J. French, P.M. Sarro: Polyimide sacrificial layer and novel materials for post-processing surface micromachining, J. Micromech. Microeng. 12, 385–389 (2002)

    Article  Google Scholar 

  100. T. Stieglitz: Flexible biomedical microdevices with double-sided electrode arrangements for neural applications, Sens. Actuators A 90, 203–211 (2001)

    Article  Google Scholar 

  101. T. Stieglitz, G. Matthias: Flexible BioMEMS with electrode arrangements on front and back side as key component in neural prostheses and biohybrid systems, Sens. Actuators B 83, 8–14 (2002)

    Article  Google Scholar 

  102. H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, P. Renaud: High-aspect-ratio, ultrathick, negative-tone-near-UV photoresist and its applications in MEMS, Sens. Actuators A 64, 33–39 (1998)

    Article  Google Scholar 

  103. H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger: SU-8: A low-cost negative resist for MEMS, J. Micromech. Microeng. 7, 121–124 (1997)

    Article  Google Scholar 

  104. E.H. Conradie, D.F. Moore: SU-8 thick photoresist processing as a functional material for MEMS applications, J. Micromech. Microeng. 12, 368–374 (2002)

    Article  Google Scholar 

  105. C.T. Pan, H. Yang, S.C. Shen, M.C. Chou, H.P. Chou: A low-temperature wafer bonding technique using patternable materials, J. Micromech. Microeng. 12, 611–615 (2002)

    Article  Google Scholar 

  106. P.A. Stupar, A.P. Pisano: Silicon, parylene, and silicon/parylene micro-needles for strength and toughness, 11th Int. Conf. Solid State Sens. Actuators, Technical Digest (Springer, Berlin 2001) pp. 1368–1389

    Google Scholar 

  107. J.M. Zara, S.W. Smith: Optical scanner using a MEMS actuator, Sens. Actuators A 102, 176–184 (2002)

    Article  Google Scholar 

  108. H.S. Noh, P.J. Hesketh, G.C. Frye-Mason: Parylene gas chromatographic column for rapid thermal cycling, J. Microelectromech. Syst. 11, 718–725 (2002)

    Article  Google Scholar 

  109. T.J. Yao, X. Yang, Y.C. Tai: BrF_3 dry release technology for large freestanding parylene microstructures and electrostatic actuators, Sens. Actuators A 97/98, 771–775 (2002)

    Article  Google Scholar 

  110. X. Wang, J. Engel, C. Liu: Liquid crystal polymer (LCP) for MEMS: Processing and applications, J. Micromech. Microeng. 13, 628–633 (2003)

    Article  Google Scholar 

  111. C.J. Lee, S.J. Oh, J.K. Song, S.J. Kim: Neural signal recording using microelectrode arrays fabricated on liquid crystal polymer material, Mater. Sci. Eng. C 4, 265–268 (2004)

    Article  Google Scholar 

  112. F.F. Faheem, K.C. Gupta, Y.C. Lee: Flip-chip assembly and liquid crystal polymer encapsulation for variable MEMS capacitors, IEEE Trans. Microw. Theory Tech. 51, 2562–2567 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian A. Zorman or Mehran Mehregany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Zorman, C.A., Mehregany, M. (2010). Material Aspects of Micro- and Nanoelectromechanical Systems. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02525-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02524-2

  • Online ISBN: 978-3-642-02525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics