Skip to main content

Computational Intelligence Techniques as Tools for Bioprocess Modelling, Optimization, Supervision and Control

  • Chapter
Computational Intelligence Techniques for Bioprocess Modelling, Supervision and Control

Part of the book series: Studies in Computational Intelligence ((SCI,volume 218))

Abstract

This is an introductory chapter that presents a general review of some Computational Intelligence (CI) techniques used today, both in the biotechnology industry and in academic research. Various applications in bioprocess-related tasks are presented and discussed. The aim of putting forth a surveying view of the main tendencies in this field is to provide a broad panorama of the research in the intersection between the two areas, to highlight the popularity of a few CI techniques in Bioprocess applications and to discuss the potential benefits that other not so explored CI techniques could offer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fulcher, J., Jain, L.C.: Computational Intelligence: A Compendium. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  2. Alford, J.S.: Bioprocess control: advances and challenges. Computers & Chemical Engineering 30(10-12), 1464–1475 (2006)

    Article  Google Scholar 

  3. U. S. Department of Health & Human Services, FDA (U. S. Food and Drug Administration), http://www.fda.gov/cder/OPS/PAT.htm (access, February 2009)

  4. Warner, B., Misra, M.: Understanding neural networks as statistical tools. The American Statistician 50(4), 284–293 (1996)

    Article  Google Scholar 

  5. Chéruy, A.: Software sensors in bioprocess engineering. Journal of Biotechnology 52(3), 193–199 (1997)

    Article  Google Scholar 

  6. Harms, P., Kostov, Y., Rao, G.: Bioprocess monitoring. Current Opinion in Bio-technology 13(2), 124–127 (2002)

    Article  Google Scholar 

  7. Linko, S., Zhu, Y.-H., Linko, P.: Applying neural networks as software sensors for enzyme engineering. Trends in Biotechnology 17(4), 155–162 (1999)

    Article  Google Scholar 

  8. Bogaerts, P., Vande Wouwer, A.: Software sensors for bioprocesses. ISA Transac-tions 42, 547–558 (2003)

    Article  Google Scholar 

  9. Lin, B., Recke, B., Knudsen, J.K.H., Jorgensen, S.B.: A systematic approach for soft sensor development. Computers & Chemical Engineering 31(5-6), 419–425 (2007)

    Article  Google Scholar 

  10. Choi, D.-J., Park, H.Y.: A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process. Water Research 35(16), 3959–3967 (2001)

    Article  Google Scholar 

  11. Komives, C., Parker, R.S.: Bioreactor state estimation and control. Current Opinion in Biotechnology 14(5), 468–474 (2003)

    Article  Google Scholar 

  12. Fellner, M., Delgado, A., Becker, T.: Functional nodes in dynamic neural networks for bioprocess modelling. Bioprocess and Biosystems Engineering 25(5), 263–270 (2003)

    Google Scholar 

  13. Becker, T., Enders, T., Delgado, A.: Dynamic neural networks as a tool for the online optimization of industrial fermentation. Bioprocess and Biosystems Engineering 24(6), 347–354 (2002)

    Article  Google Scholar 

  14. Cimander, C., Carlsson, M., Mandenius, C.-F.: Sensor fusion for on-line monitoring of yoghurt fermentation. Journal of Biotechnology 99(3), 237–248 (2002)

    Article  Google Scholar 

  15. Desai, K., Badhe, Y., Tambe, S.S., Kulkarni, B.D.: Soft-sensor development for fed-batch bioreactors using support vector regression. Biochemical Engineering Journal 27(3), 225–239 (2006)

    Article  Google Scholar 

  16. Schaffer, J.D., Whitely, D., Eshelman, L.J.: Combinations of genetic algorithms and neural networks: a survey of the state of the art. In: Proceedings of the International Workshop of Genetic Algorithms and Neural Networks, pp. 1–37 (1992)

    Google Scholar 

  17. Yao, X.: Evolving neural networks. Proceedings of the IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  18. Campbell, C.: Constructive learning techniques for designing neural network systems. In: Leondes, C. (ed.) Neural Network Systems Technologies and Applications, vol. 2. Academic Press, San Diego (1997)

    Google Scholar 

  19. Muselli, M.: Sequential constructive techniques. In: Leondes, C. (ed.) Neural Network Systems Techniques and Applications, vol. 2, pp. 81–144. Academic, San Diego (1998)

    Google Scholar 

  20. Parekh, R.G., Yang, J., Honavar, V.: Constructive neural-network learning algorithms for pattern classification. IEEE Transactions on Neural Networks 11(2), 436–451 (2000)

    Article  Google Scholar 

  21. Kwok, T.-Y., Yeung, D.-Y.: Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Transactions on Neural Networks 8(3), 630–645 (1999)

    Article  Google Scholar 

  22. Fahlman, S., Lebiere, C.: The cascade correlation architecture. In: Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems, vol. 2, pp. 524–532. Morgan Kaufman, Los Altos (1990)

    Google Scholar 

  23. Lehtokangas, M.: Modelling with constructive backpropagation. Neural Networks 12(4-5), 707–716 (1999)

    Article  Google Scholar 

  24. Fahlman, S.: The recurrent cascade-correlation architecture. In: Advances in Neural Information Processing Systems, vol. 3, pp. 190–196. Morgan Kaufman, San Mateo (1991)

    Google Scholar 

  25. Prechelt, L.: Investigation of the CasCor family of learning algorithms. Neural Networks 10(5), 885–896 (1997)

    Article  Google Scholar 

  26. Lahnajärvi, J.J.T., Lehtokangas, M.I., Saarinen, J.P.P.: Fixed cascade error – a novel constructive neural network for structure learning. In: Proceedings of the Artificial Neural Networks in Engineering Conference (ANNIE 1999), St. Louis, USA, pp. 25–30 (1999)

    Google Scholar 

  27. Lahnajärvi, J.J.T., Lehtokangas, M.I., Saarinen, J.P.P.: Evaluation of constructive neural networks with cascaded architectures. Neurocomputing 48(1), 573–607 (2002)

    Article  MATH  Google Scholar 

  28. Vanek, M., Hrncirik, P., Vovsik, J., Nahlik, J.: On-line estimation of biomass concentration using a neural network and information about metabolic state. Bioprocess and Biosystems Engineering 27(1), 9–15 (2004)

    Article  Google Scholar 

  29. Kadlec, P., Gabrys, B., Strandt, S.: Data-driven soft sensors in the process industry. Computers & Chemical Engineering (article in press) (2009)

    Google Scholar 

  30. Yin, L., Yang, R., Gabbouj, M., Neuvo, Y.: Weighted median filters: a tutorial. IEEE Transactions on circuits and systems – II: Analog and digital signal processing 43(3), 157–192 (1996)

    Article  Google Scholar 

  31. Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry 36, 1627–1639 (1964)

    Article  Google Scholar 

  32. Eilers, P.H.C.: A perfect smoother. Analytical Chemistry 75(14), 3631–3636 (2003)

    Article  Google Scholar 

  33. Patnaik, P.R.: Further enhancement of fed-batch streptokinase yield in the presence of inflow noise by coupled neural networks - IMTECH communication no. 033/2000. Process Biochemistry 37(2), 145–151 (2001)

    Article  MathSciNet  Google Scholar 

  34. Giordano, R.C., Bertini Jr., J.R., Nicoletti, M.C., Giordano, R.L.C.: Online filtering of CO 2 signals from a bioreactor gas outflow using a committee of constructive neural networks. Bioprocess and Biosystems Engineering 31(2), 101–109 (2008)

    Article  Google Scholar 

  35. Patnaik, P.R.: Coupling of a neural filter and a neural controller for improvement of fermentation performance. Biotechnology Techniques 13(11), 735–738 (1999)

    Article  Google Scholar 

  36. Patnaik, P.R.: Improvement of the microbial production of Streptokinase by controlled filtering of process noise. Process Biochemistry 35(3-4), 309–315 (1999)

    Article  Google Scholar 

  37. Patnaik, P.R.: On the performances of noise filters in the restoration of oscillatory behavior in continuous yeast cultures. Biotechnology Letters 25(9), 681–685 (2003)

    Article  Google Scholar 

  38. Patnaik, P.R.: An integrated hybrid neural system for noise filtering, simulation and control of a fed-batch recombinant fermentation. Biochemical Engineering Journal 15(3), 165–175 (2003)

    Article  Google Scholar 

  39. Patnaik, P.R.: Hybrid filtering of feed stream noise from oscillating yeast cultures by combined Kalman and neural network configurations. Bioprocess and Biosystems Engineering 30(3), 181–188 (2007)

    Article  Google Scholar 

  40. Patnaik, P.R.: Hybrid filtering to rescue stable oscillations from noise-induced chaos in continuous cultures of budding yeast. FEMS Yeast Research 6(1), 129–138 (2006)

    Article  MathSciNet  Google Scholar 

  41. Patnaik, P.R.: A hybrid simulator for improved filtering of noise from oscillating microbial fermentations. Biochemical Engineering Journal 39(2), 389–396 (2008)

    Article  Google Scholar 

  42. Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd edn. Wiley Series in Probability and Statistics. John Wiley & Sons, Chichester (2009)

    MATH  Google Scholar 

  43. Weuster-Botz, D.: Experimental design for fermentation media development: statistical design or global random search? Journal of Bioscience and Bioengineering 90(5), 473–483 (2000)

    Google Scholar 

  44. Milavec, P., Podgornik, A., Stravs, R., Koloini, T.: Effect of experimental error on the efficiency of different optimization methods for bioprocess media optimization. Bioprocess and Biosystems Engineering 25(2), 69–78 (2002)

    Article  Google Scholar 

  45. Zuzek, M., Friedrich, J., Cestnik, B., Karalic, A., Cimerman, A.: Optimisation of fermentation medium by a modified method of genetic algorithms. Biotechnology Techniques 10(12), 991–996 (1996)

    Article  Google Scholar 

  46. Nagata, Y., Chu, K.H.: Optimization of a fermentation medium using neural networks and genetic algorithms. Biotechnology Letters 25(21), 1837–1842 (2003)

    Article  Google Scholar 

  47. Achary, A., Hariharan, K.A., Bandhyopadhyaya, S., Ramachandran, R., Jayaraman, K.: Application of numerical modeling for the development of optimized complex medium for D-hydantoinase production from Agrobacterium radiobacter NRRL-B-11291. Biotechnology and Bioengineering 55(1), 148–154 (1997)

    Article  Google Scholar 

  48. Rao, C.S., Sathish, T., Mahalaxmi, M., Laxmi, G.S., Rao, R.S., Prakasham, R.S.: Modelling and optimization of fermentation factors for enhancement of alkaline protease production by isolated Bacillus circulans using feed-forward neural network and genetic algorithm. Journal of Applied Microbiology 104(3), 889–898 (2008)

    Article  Google Scholar 

  49. Imandi, S.B., Karanam, S.K., Garapati, H.R.: Optimization of fermentation medium for the production of lipopeptide using artificial neural networks and genetic algorithms. International Journal of Natural and Engineering Sciences 2(2), 105–109 (2008)

    Google Scholar 

  50. Gu, X.B., Zheng, Z.M., Yu, H.Q., Wang, J., Liang, F.L., Liu, R.L.: Optimization of medium constituents for a novel lipopeptide production by Bacillus subtilis MO-01 by a response surface method. Process Biochemistry 40(10), 3196–3201 (2005)

    Article  Google Scholar 

  51. Franco-Lara, E., Link, H., Weuster-Botz, D.: Evaluation of artificial neural networks for modelling and optimization of medium composition with a genetic algorithm. Process Biochemistry 41(10), 2200–2206 (2006)

    Article  Google Scholar 

  52. De Jong, K.A.: An analysis of the behaviour of a class of genetic adaptive systems, Doctoral Thesis, Department of Computer and Communication Science, University of Michigan, Ann Arbor (1975)

    Google Scholar 

  53. Link, H., Weuster-Botz, D.: Genetic algorithm for multi-objective experimental optimization. Bioprocess and Biosystems Engineering 29(5-6), 385–390 (2006)

    Article  Google Scholar 

  54. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

  55. Desai, K.M., Survase, S.A., Saudagar, P.S., Lele, S.S., Singhal, R.S.: Comparison of artificial network (ANN) and response surface methodology (RSM) in fermentation media optimization: Case study of fermentative production of scleroglucan. Biochemical Engineering Journal 41(3), 266–273 (2008)

    Article  Google Scholar 

  56. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, Australia, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  57. Cockshott, A.R., Hartman, B.E.: Improving the fermentation medium for Echinocandin B production part II: Particle swarm optimization. Process Biochemistry 36(7), 661–669 (2001)

    Article  Google Scholar 

  58. Glassey, J., Ignova, M., Ward, A.C., Montague, G.A., Morris, A.J.: Bioprocess supervision: neural networks and knowledge based systems 52(3), 201–205 (1997)

    Google Scholar 

  59. Lee, J., Lee, S.Y., Park, S., Middleberg, A.P.J.: Control of fed-batch fermentations. Biotechnology Advances 17(1), 29–48 (1999)

    Article  Google Scholar 

  60. Clementschitsch, F., Bayer, K.: Improvement of bioprocess monitoring: development of novel concepts. Microbial Cell Factories 5(19), 1–11 (2006)

    Google Scholar 

  61. Schügerl, K.: Progress in monitoring, modeling and control of bioprocesses during the last 20 years. Journal of Biotechnology 85(2), 149–173 (2001)

    Article  Google Scholar 

  62. Lennox, B., Montague, G.A., Frith, A.M., Gent, C., Bevan, V.: Industrial application of neural networks – an investigation. Journal of Process Control 11(5), 497–507 (2001)

    Article  Google Scholar 

  63. Karim, M.N., Yoshida, T., Rivera, S.L., Saucedo, V.M., Eikens, B., Oh, G.-S.: Global and local neural network models in biotechnology: Application to different cultivation processes. Journal of Fermentation and Bioengineering 83(1), 1–11 (1997)

    Article  Google Scholar 

  64. Chaudhuri, B., Modak, J.M.: Optimization of fed-batch bioreactor using neural network model. Bioprocess Engineering 19(1), 71–79 (1998)

    Article  Google Scholar 

  65. De Tremblay, M., Perrier, M., Chavarie, C., Archambault, J.: Optimization of fed-batch culture of hybridoma cells using dynamic programming: single and multi feed cases. Bioprocess and Biosystems Engineering 7(5), 229–234 (1992)

    Google Scholar 

  66. Waldraff, W., King, R., Gilles, D.D.: Optimal feeding strategies by adaptive mesh selection for fed-batch bioprocesses. Bioprocess Engineering 17(4), 221–227 (1997)

    Article  Google Scholar 

  67. Simutis, R., Lübbert, A.: A comparative study on random search algorithms for biotechnical process optimization. Journal of Biotechnology 52(3), 245–256 (1997)

    Article  Google Scholar 

  68. Simutis, R., Oliveira, R., Manikowski, M., Azevedo, S.F., Lübbert, A.: How to increase the performance of models for process optimization and control. Journal of Biotechnology 59(1-2), 73–89 (1997)

    Article  Google Scholar 

  69. Galvanauskas, V., Simutis, R., Lübbert, A.: Hybrid process models for process optimization, monitoring and control. Bioprocess and Biosystems Engineering 26(6), 393–400 (2004)

    Article  Google Scholar 

  70. Franco-Lara, E., Weuster-Botz, D.: Estimation of optimal feeding strategies for fed-batch bioprocesses. Bioprocess and Biosystems Engineering 27(4), 255–262 (2005)

    Article  Google Scholar 

  71. Petrova, M., Koprinkova, P., Patarinska, T., Bliznakova, M.: Neural network modelling of fermentation process. Microorganisms cultivation model. Bioprocess Engineering 16(3), 145–149 (1997)

    Google Scholar 

  72. Petrova, M., Koprinkova, P., Patarinska, T., Bliznakova, M.: Neural network modelling of fermentation process. Bioprocess Engineering 18(4), 281–287 (1998)

    Article  Google Scholar 

  73. Tholudur, A., Ramirez, W.F.: Optimization of fed-batch bioreactors using neural network parameter function models. Biotechnology Progress 12(3), 302–309 (1996)

    Article  Google Scholar 

  74. Tholudur, A., Ramirez, W.F., McMillan, J.D.: Interpolated parameter functions for neural network models. Computers & Chemical Engineering 24(11), 2545–2553 (2000)

    Article  Google Scholar 

  75. Laursen, S.Ö., Webb, D., Ramirez, W.F.: Dynamic hybrid neural network model of an industrial fed-batch fermentation process to produce foreign protein. Computers & Chemical Engineering 31(3), 163–170 (2007)

    Article  Google Scholar 

  76. Henriques, A.W.S., Costa, A.C., Alves, T.L.M., Lima, E.L.: Optimization of fed-batch processes: challenges and solutions. Brazilian Journal of Chemical Engineering 16, 171–177 (1999)

    Article  Google Scholar 

  77. Costa, A.C., Henriques, A.W.S., Alves, T.L.M., Maciel Filho, R., Lima, E.L.: A hybrid neural model for the optimization of fed-batch fermentations. Brazilian Journal of Chemical Engineering 16, 53–63 (1999)

    Article  Google Scholar 

  78. Gadkar, K.G., Mehra, S., Gomes, J.: On-line adaptation of neural networks for bioprocess control. Computers & Chemical Engineering 29(5), 1047–1057 (2005)

    Article  Google Scholar 

  79. Sarkar, D., Modak, J.M.: ANNSA: a hybrid artificial neural network/simulated annealing algorithm for optimal control problems. Chemical Engineering Science 58(14), 3131–3142 (2003)

    Article  Google Scholar 

  80. Sarkar, D., Modak, J.M.: Optimisation of fed-batch bioreactors using genetic algorithms. Chemical Engineering Science 58(11), 2283–2296 (2003)

    Article  Google Scholar 

  81. Sarkar, D., Modak, J.M.: Optimization of fed-batch bioreactors using genetic algorithm: multiple control variables. Computers & Chemical Engineering 28(5), 789–798 (2004)

    Article  Google Scholar 

  82. Modak, J.M., Lim, H.C.: Optimal operation of fed-batch bioreactors with two control variables. The Chemical Engineering Journal 42, B15–B24 (1989)

    Article  Google Scholar 

  83. Dutta, J.R., Dutta, P.K., Banerjee, R.: Modeling and optimization of protease production by a newly isolated Pseudomonas sp. using genetic algorithm. Process Bio-chemistry 40(2), 879–884 (2005)

    Article  Google Scholar 

  84. Cruz, A.J.G., Silva, A.S., Araújo, M.L.G.C., Giordano, R.C., Hokka, C.O.: Modeling and optimization of the cephalosporin C production bioprocess in a fed batch bioreactor with invert sugar as substrate. Chemical Engineering Science 54(15-16), 3137–3142 (1999)

    Article  Google Scholar 

  85. Montera, L., Horta, A.C.L., Zangirolami, T.C., Nicoletti, M.C., Carmo, T.S., Gonçalves, V.M.: A heuristic search for optimal parameter values of three biokinetic growth models for describing batch cultivations of Streptococcus pneumoniae in bioreactors. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds.) IEA/AIE 2008. LNCS (LNAI), vol. 5027, pp. 359–368. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  86. Valencia, C., Espinosa, G., Giralt, J., Giralt, F.: Optimization of invertase production in a fed-batch bioreactor using simulation based dynamic programming coupled with a neural classifier. Computers & Chemical Engineering 31(9), 1131–1140 (2007)

    Article  Google Scholar 

  87. Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., Rosen, D.: Fuzzy ARTMAP: a neural network architecture for incremental supervised learning of analog muldimensional maps. IEEE Transactions on Neural Networks 3(5), 698–713 (1992)

    Article  Google Scholar 

  88. Storn, R.M., Price, K.V.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  89. Storn, R.M.: On the usage of differential evolution for function optimization. In: NAFIPS 1996, pp. 519–523 (1996)

    Google Scholar 

  90. Storn, R.M., Price, K.V.: Minimizing the real functions of the ICEC 1996 contest by differential evolution. In: IEEE Conference on Evolutionary Computation, Nagoya, Japan, pp. 842–844 (1996)

    Google Scholar 

  91. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  92. Chiou, J.-P., Wang, F.-S.: A hybrid method of differential evolution with application to optimal control problems of a bioprocess system. In: Proc. of The IEEE Conference on Evolutionary Computation, Anchorage, pp. 627–631 (1998)

    Google Scholar 

  93. Chiou, J., Wang, F.: Estimation of Monod model parameters by hybrid differential evolution. Bioprocess and Biosystems Engineering 24(2), 109–113 (2001)

    Article  Google Scholar 

  94. Wang, F.-S., Sheu, J.-W.: Multiobjective parameter estimation problems of fermentation processes using a high ethanol tolerance yeast. Chemical Engineering Science 55(18), 3685–3695 (2000)

    Article  Google Scholar 

  95. Wang, F.-S., Su, T.-L., Jang, H.-J.: Hybrid differential evolution for problems of kinetic parameter estimation and dynamic optimization of an ethanol fermentation process. Industrial and Engineering Chemistry Research 40, 2876–2885 (2001)

    Article  Google Scholar 

  96. Ronen, M., Shabtai, Y., Guterman, H.: Optimization of feeding profile for a fed-batch bioreactor by an evolutionary algorithm. Journal of Biotechnology 97(3), 253–263 (2002)

    Article  Google Scholar 

  97. Lim, H.C., Tayeb, Y.J., Modak, J.M., Bonte, P.: Computational algorithms for optimal feed rates for a class of fed-batch fermentation - numerical results for penicillin and cell-mass production. Biotechnology and Bioengineering 28(9), 1408–1420 (1986)

    Article  Google Scholar 

  98. Chen, L., Nguang, S.K., Chen, X.D., Li, X.M.: Modelling and optimization of fed-batch fermentation processes using dynamic neural networks and genetic algorithms. Biochemical Engineering Journal 22(1), 51–61 (2004)

    Article  Google Scholar 

  99. Liu, W.: An extended Kalman filter and neural network cascade fault diagnosis strategy for the glutamic acid fermentation process. Artificial Intelligence in Engineering 13(2), 131–140 (1999)

    Article  Google Scholar 

  100. Liu, W., Tian, S.B.: Parameter estimation and optimal control of the batch glutamic acid fermentation process. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Beijing, vol. 1, pp. 314–319 (1988)

    Google Scholar 

  101. Zhang, J.: Improved on-line process fault diagnosis through information fusion in multiple neural networks. Computers & Chemical Engineering 30(3), 558–571 (2006)

    Article  Google Scholar 

  102. Shimizu, H., Yasuoka, K., Uchiyama, K., Shioya, S.: On-line fault diagnosis for optimal rice α-amylase production process of a temperature-sensitive mutant of Saccharomyces cerevisiae by an autoassociative neural network. Journal of Fermentation and Bioengineering 83(5), 435–442 (1997)

    Article  Google Scholar 

  103. Huang, J., Shimizu, H., Shioya, S.: Data preprocessing and output evaluation of an autoassociative neural network model for online fault detection in virginiamycin production. Journal of Bioscience and Bioengineering 94(1), 70–77 (2002)

    Article  Google Scholar 

  104. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: A machine learning approach to biochemical reaction rules discovery. In: Francis, J., Doyle III (eds.) Proceedings of Foundations of Systems Biology and Engineering FOSBE 2005, Santa Barbara, pp. 375–379 (2005)

    Google Scholar 

  105. Muggleton, S., Srinivasan, A., King, R.D., Sternberg, M.J.E.: Biochemical knowledge discovery using inductive logic programming. In: Arikawa, S., Motoda, H. (eds.) DS 1998. LNCS (LNAI), vol. 1532, pp. 326–341. Springer, Heidelberg (1998)

    Google Scholar 

  106. Buck, K.K.S., Subramanian, V., Block, D.E.: Identification of critical batch operating parameters in fed-batch recombinant E. coli fermentations using decision tree analysis. Biotechnology Progress 18(6), 1366–1376 (2002)

    Article  Google Scholar 

  107. Gnoth, S., Jenzsch, M., Simutis, R., Lübbert, A.: Control of cultivation processes for recombinant protein production: a review. Bioprocess and Biosystems Engineering 31(1), 21–39 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nicoletti, M.C., Jain, L.C., Giordano, R.C. (2009). Computational Intelligence Techniques as Tools for Bioprocess Modelling, Optimization, Supervision and Control. In: do Carmo Nicoletti, M., Jain, L.C. (eds) Computational Intelligence Techniques for Bioprocess Modelling, Supervision and Control. Studies in Computational Intelligence, vol 218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01888-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01888-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01887-9

  • Online ISBN: 978-3-642-01888-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics