Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 783))

  • 1525 Accesses

The essential ingredients of a numerical relativity code are the evolution formalism and the numerical scheme. We have already discussed a couple of well-tested evolution formalisms: the generalized harmonic one and Z4, from which BSSN can be derived by symmetry breaking. We have also presented a robust, cost-efficient, finite-difference scheme (FDOC), which is able to evolve smooth solutions, and a more sophisticated alternative (MUSCL), suitable for weak solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. B. Cook, Initial data for numerical relativity, Liv. Rev. Relat. http://www.livingreviews.org/lrr-2000-5

  2. J. Thornburg, Event and apparent horizon finders for 3 + 1 numerical relativity. Liv. Rev.Relat. http://www.livingreviews.org/lrr-2007–3

  3. A. Lichnerowicz, J. Math. Pures et Appl. 23, 37 (1944).

    MATH  MathSciNet  Google Scholar 

  4. R. Beig and N. O Murchadha, Class. Quantum Grav. 11, 419 (1994).

    Article  MATH  ADS  Google Scholar 

  5. R. Beig and N. O Murchadha, Class. Quantum Grav. 13, 739 (1996).

    Article  MATH  ADS  Google Scholar 

  6. S. Brandt and B. Brügmann, Phys. Rev. Lett. 78, 3606 (1997).

    Article  ADS  Google Scholar 

  7. F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Campanelli, C. O. Lousto, P. Marronetti and Y. Zlochower, Phys. Rev. Lett. 96,111101 (2006).

    Article  ADS  Google Scholar 

  9. J. G. Baker et al., Phys. Rev. Lett. 96, 111102 (2006).

    Article  ADS  Google Scholar 

  10. P. Anninos et al., Phys. Rev. Lett. 74, 630 (1995).

    Article  ADS  Google Scholar 

  11. J. Libson et al., Phys. Rev. D53, 4335 (1996).

    ADS  MathSciNet  Google Scholar 

  12. A. Arbona et al., Phys. Rev. D57, 2397 (1998).

    ADS  MathSciNet  Google Scholar 

  13. D. Alic, C. Bona and C. Bona-Casas, Phys. Rev. D (2009). ArXiv:0811.1691

    Google Scholar 

  14. D. Brown et al., Phys. Rev. D76, 081503(R) (2007).

    ADS  Google Scholar 

  15. J. Thornburg, Class. Quan. Grav. 4, (1987).

    Google Scholar 

  16. P. Anninos et al., Phys. Rev. Lett. 71, 2851 (1993).

    Article  ADS  Google Scholar 

  17. C. Bona, J. Massó, E. Seidel and J. Stela, Phys. Rev. Lett. 75, 600 (1995).

    Article  ADS  Google Scholar 

  18. C. Bona, J. Massó, E. Seidel and J. Stela, Phys. Rev. D56, 3405 (1997).

    ADS  Google Scholar 

  19. E. Seidel and W. M. Suen, Phys. Rev. Lett. 69, 1845 (1992).

    Article  ADS  Google Scholar 

  20. B. Szilágyi, Class. Quantum Grav. 24, S275–S293 (2007).

    Article  MATH  ADS  Google Scholar 

  21. H. P. Pfeiffer, Class. Quantum Grav. 24, S59–S81 (2007).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. F. Pretorius, Class. Quantum Grav. 23, S529 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. R. A. Matzner, M. F. Huq and D. Shoemaker, Phys. Rev. D59, 024015 (1998).

    ADS  MathSciNet  Google Scholar 

  24. C. Bona and J. Massó, Phys. Rev. D38, 2419 (1988).

    ADS  Google Scholar 

  25. F. Estabrook et al., Phys. Rev. D7, 2814 (1973).

    ADS  MathSciNet  Google Scholar 

  26. L. Smarr and J. W. York, Phys. Rev. D17, 1945 (1978).

    ADS  MathSciNet  Google Scholar 

  27. L. Smarr and J. W. York, Phys. Rev. D17, 2529 (1978).

    ADS  MathSciNet  Google Scholar 

  28. B. Reimann, M. Alcubierre, J. A. González and D. Núñez, Phys. Rev. D71, 064021 (2005).

    ADS  Google Scholar 

  29. M. Alcubierre et al., Phys. Rev. D72, 124018 (2005).

    ADS  MathSciNet  Google Scholar 

  30. http://www.cactuscode.org

  31. B. Gustafson, H. O. Kreiss and J. Oliger, Time Dependent Problems and Difference Methods, Wiley, New York (1995).

    Google Scholar 

  32. M. J. Berger and R. J. LeVeque, SIAM J. Numer. Anal. 35, 2298 (1998).

    Google Scholar 

  33. F. Pretorius and L. Lehner, J. Comput. Phys. 198, 10 (2004).

    Article  MATH  ADS  Google Scholar 

  34. H. Friedrich, ‘Conformal Einstein evolution’ in The Conformal Structure of Space-Times: Geometry, Analysis, Numerics, ed. by J. Frauendiener and H. Friedrich, Springer Lecture Notes in Physics, Vol 604, pp. 1–50, Springer, Berlin Heidelberg New York (2002).

    Google Scholar 

  35. J. Baker, B. Brügmann, M. Campanelli and C. O. Lousto, Class. Quantum Grav. 17, L149 (2000).

    Article  MATH  ADS  Google Scholar 

  36. J. Baker, M. Campanelli and C. O. Lousto, Phys. Rev. D65, 044001 (2002).

    ADS  Google Scholar 

  37. M. Alcubierre and B. Brügmann, Phys. Rev. D63, 104006 (2001).

    ADS  Google Scholar 

  38. M. Alcubierre et al., Phys. Rev. D67, 084023 (2003).

    ADS  MathSciNet  Google Scholar 

  39. L. Lindblom and M. A. Scheel, Phys. Rev. D67, 124005 (2003).

    ADS  MathSciNet  Google Scholar 

  40. C. Bona, J. Carot and C. Palenzuela-Luque, Phys. Rev. D72, 124010 (2005).

    ADS  MathSciNet  Google Scholar 

  41. http://www.ligo.caltech.edu http://www.virgo.infn.it http://geo600.aei.mpg.de http://tamago.mtk.nao.ac.jp http://www.gravity.uwa.edu.au

  42. K. Dantzmann and A. Rudiger, Class. Quantum Grav. 20, S1 (2003).

    Article  ADS  Google Scholar 

  43. C. Misner and J. Wheeler, Ann. Phys. (N.Y.) 2, 525 (1957).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. D. R. Brill and R. W. Lindquist, Phys. Rev. 131, 471 (1963).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. J. M. Bowen and J. W. York, Phys. Rev. D21, 2047 (1980).

    ADS  Google Scholar 

  46. E. Bonning, P. Marronetti, D. Neilsen and R. A. Matzner, Phys. Rev. D68, 044019 (2003).

    ADS  MathSciNet  Google Scholar 

  47. P. Marronetti et al., Phys. Rev. D62, 024017 (2000).

    ADS  Google Scholar 

  48. L. Blanchet, Phys. Rev. D68, 084002 (2003).

    ADS  MathSciNet  Google Scholar 

  49. W. Tichy, B. Brügmann, M. Campanelli and P. Diener, Phys. Rev. D67, 064008 (2003).

    ADS  Google Scholar 

  50. S. Nissanke, Phys. Rev. D73, 124002 (2006).

    ADS  Google Scholar 

  51. B. Brügmann, W. Tichy and N. Jansen, Phys. Rev. Lett. 92, 211101 (2004).

    Article  ADS  Google Scholar 

  52. F. Herrmann, I. Hinder, D. Shoemaker and P. Laguna, Class. Quantum Grav. 24, S33–S42 (2007).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  53. J. G. Baker et al., Astrophys. J. Lett. 653, 93–96 (2006).

    Article  ADS  Google Scholar 

  54. A. Gopakumar, M. Hannam, S. Husa and B. Brügmann, Phys. Rev. D78, 064026 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carles Bona .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bona, C., Bona-Casas, C., Palenzuela-Luque, C. (2009). Black Hole Simulations. In: Elements of Numerical Relativity and Relativistic Hydrodynamics. Lecture Notes in Physics, vol 783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01164-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01164-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01163-4

  • Online ISBN: 978-3-642-01164-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics