Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 783))

  • 1545 Accesses

A numerical relativity code consists in two main ingredients: the evolution system and the discretization algorithm. Up to now, we have focused in the evolution formalism. The strong hyperbolicity requirement is a requisite for a well-posed system at the continuum level. Also, the subsidiary system, governing constraint deviations, has been studied at the continuum level, where we have seen how the subset of true Einstein’s solutions can become an attractor for extended (constraint-violating) solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. D. Lax, B. Wendroff, Commun. Pure Appl Math. 13, 217-237 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  2. R. W. MacCormack, AIAA Paper 69-354 (1969).

    Google Scholar 

  3. W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Veterling, Numerical Recipes, Cambridge University Press, Cambridge(1989).

    MATH  Google Scholar 

  4. O. A. Liskovets, Journal of Differential Equations I, 1308-1323 (1965).

    Google Scholar 

  5. C.-W. Shu and S. Osher, J. Comp. Phys. 77, 439-471 (1988).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. B. Gustafson, H.O. Kreiss and J. Oliger, Time dependent problems and difference methods, Wiley, New York (1995).

    Google Scholar 

  7. C. Bona, C. Bona-Casas and J. Terrades, J. Comp. Phys. 228, 2266 (2009).

    Article  MATH  ADS  Google Scholar 

  8. M. Alcubierre et al, Class. Quantum. Grav. 21, 589 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. http://www.appleswithapples.org/TestMethods/Tests/tests.html

  10. K. Kiuchi and H-A. Shinkai, Phys. Rev. D77, 044010 (2008).

    Article  ADS  Google Scholar 

  11. Y. Zlochower, J. G. Baker, M. Campanelli and C. O. Lousto, Phys. Rev. D72, 024021 (2005).

    Article  ADS  Google Scholar 

  12. R. J. LeVeque, Numerical methods for conservation laws, Birkhauser, Basel, (1992).

    MATH  Google Scholar 

  13. S. K. Godunov, Math. Sbornik 47 271-306 (1959), translated US Joint Publ. Res. Service, JPRS 7226, (1969).

    Google Scholar 

  14. E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin Heidelberg (1997).

    MATH  Google Scholar 

  15. C. Bona and J. Massó, Phys. Rev. Lett. 68, 1097 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. http://www.whiskycode.org

  17. M. A. Aloy, J. A. Pons and J. M. Ibáñez, Computer Physics Commun. 120 115 (1999).

    Article  MATH  ADS  Google Scholar 

  18. V. V. Rusanov, J. Comput. Mat. Phys. USSR 1 267 (1961).

    MathSciNet  Google Scholar 

  19. A. Harten, P. D. Lax and B. van Leer, SIAM Rev., 25, 35 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  20. B. van Leer, J. Comput. Phys. 23, 276 (1977).

    Article  ADS  Google Scholar 

  21. B. van Leer, J. Comput. Phys. 32, 101 (1979).

    Article  ADS  Google Scholar 

  22. F. Banyuls, J. A. Font, J. M. Ibáñez, J. M. Martí, and J. A. Miralles, Astrophys. J. 476, 221 (1997).

    Article  ADS  Google Scholar 

  23. P. Colella and P. R. Woodward, J. Comput. Phys. 54, 174 (1984).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. A. Harten, J. Comput. Phys. 49, 357-393 (1983).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. S. Osher and S. Chakravarthy, ICASE Report 84-44 (1984), IMA Volumes in Mathematics and its Applications, Vol 2, pp. 229-274. Springer-Verlag New York (1986).

    Google Scholar 

  26. C.-W. Shu, Math. Comput. 49, 105-121 (1987).

    Article  MATH  Google Scholar 

  27. D. S. Balsara and Chi-Wang Shu, J. Comput. Phys. 160, 405-452 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. G. A. Sod, J. Comput. Phys. 27, 1-31 (1978).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. S. A. Orszag and C. M. Tang, J. Fluid Mech. 90, 129-143(1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carles Bona .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bona, C., Bona-Casas, C., Palenzuela-Luque, C. (2009). Numerical Methods. In: Elements of Numerical Relativity and Relativistic Hydrodynamics. Lecture Notes in Physics, vol 783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01164-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01164-1_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01163-4

  • Online ISBN: 978-3-642-01164-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics