Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 783))

  • 1530 Accesses

As we mentioned in the previous chapter, the ‘free evolution’ approach is by far the most commonly used today in numerical relativity codes. It consists in using just the evolution equations to compute the full set of dynamical quantities γ ij , K ij ). We have seen that the subset of evolution equations is not unique: evolution equations can be modified by adding constraints in many different ways. This implies that we must distinguish among different versions of free evolution, depending on the particular variant of the evolution equation which is selected in each case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. C. Bona, J. Massó, E. Seidel and J. Stela, Phys. Rev. Lett. 75, 600 (1995).

    Article  ADS  Google Scholar 

  2. H. O. Kreiss and J. Lorentz, Initial-Boundary Problems and the Navier-Stokes Equations, Academic Press, New York (1989).

    MATH  Google Scholar 

  3. M. Alcubierre et al., Class. Quantum. Grav. 21, 589 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Veterling, Numerical Recipes, Cambridge University Press, Cambridge (1989).

    MATH  Google Scholar 

  5. L. Smarr and J. W. York, Phys. Rev. D17, 1945 (1978).

    ADS  MathSciNet  Google Scholar 

  6. L. Smarr and J. W. York, Phys. Rev. D17, 2529 (1978).

    ADS  MathSciNet  Google Scholar 

  7. J. Centrella, Phys. Rev. D21, 2776 (1980).

    ADS  MathSciNet  Google Scholar 

  8. T. De Donder, La Gravifique Einstenienne, Gauthier-Villars, Paris (1921).

    Google Scholar 

  9. T. De Donder, The Mathematical Theory of Relativity, Massachusetts Institute of Technology, Cambridge (1927).

    MATH  Google Scholar 

  10. K. Lanczos, Ann. Phys. 13, 621 (1922).

    Google Scholar 

  11. K. Lanczos, Z. Phys. 23, 537 (1923).

    Google Scholar 

  12. V. A. Fock, The Theory of Space, Time and Gravitation, Pergamon, London (1959).

    MATH  Google Scholar 

  13. C. Bona and J. Massó, Phys. Rev. Lett. 68, 1097 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. T. Nakamura, K. Oohara and Y. Kojima, Prog. Theor. Phys. Suppl. 90, 1 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  15. T. Nakamura and K. Oohara, Frontiers in Numerical Relativity, ed. by C. R. Evans, L. S. Finn and D. Hobill, Cambridge University Press, Cambridge (1989).

    Google Scholar 

  16. M. Shibata and T. Nakamura, Phys. Rev. D52, 5428 (1995).

    ADS  MathSciNet  Google Scholar 

  17. T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D59, 024007 (1999).

    ADS  MathSciNet  Google Scholar 

  18. A. Arbona, C. Bona, J. Massó and J. Stela, Phys. Rev. D60, 104014 (1999).

    ADS  Google Scholar 

  19. M. Alcubierre et al., Phys. Rev. D64, 061501 (2001).

    ADS  MathSciNet  Google Scholar 

  20. M. Alcubierre et al., Phys. Rev. Lett. 87, 271103 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Alcubierre et al., Phys. Rev. D67, 084023 (2003).

    ADS  MathSciNet  Google Scholar 

  22. M. Campanelli, C. O. Lousto, P. Marronetti and Y. Zlochower, Phys. Rev. Lett. 96,111101 (2006).

    Article  ADS  Google Scholar 

  23. J. G. Baker et al., Phys. Rev. Lett. 96, 111102 (2006).

    Article  ADS  Google Scholar 

  24. C. Bona, T. Ledvinka and C. Palenzuela, Phys. Rev. D66, 084013 (2002).

    ADS  MathSciNet  Google Scholar 

  25. C. Bona, T. Ledvinka, C. Palenzuela and M. Žáček, Phys. Rev. D67, 104005 (2003).

    ADS  Google Scholar 

  26. C. Bona, T. Ledvinka, C. Palenzuela and M. Žáček, Phys. Rev. D69, 064036 (2004).

    ADS  Google Scholar 

  27. F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  28. O. Brodbeck, S. Frittelli, P. Huebner and O. A. Reula, J. Math. Phys. 40, 909 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. C. Gundlach, G. Calabrese, I. Hinder and J. M. Martín-García, Class. Quantum Grav. 22, 3767 (2005).

    Article  MATH  Google Scholar 

  30. R. Arnowit, S. Deser and C. W. Misner. Gravitation: An Introduction to Current Research, ed. by L. Witten, Wiley, New York (1962). gr-qc/0405109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carles Bona .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bona, C., Bona-Casas, C., Palenzuela-Luque, C. (2009). Free Evolution. In: Elements of Numerical Relativity and Relativistic Hydrodynamics. Lecture Notes in Physics, vol 783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01164-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01164-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01163-4

  • Online ISBN: 978-3-642-01164-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics