Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 783))

  • 1544 Accesses

Physics theories are made by building mathematical models that correspond to physical systems. General relativity, the physical theory of gravitation, models spacetime in a geometrical way: as a 4D manifold. The concept of manifold is just a generalization to the multidimensional case of the usual concept of a 2D surface. This will allow us to apply the well-known tools of differential geometry, the branch of mathematics which describes surfaces, to the study of spacetime geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Stephani et al. Exact Solutions of Einstein’s Field Equations, 2nd edn, Cambridge, Cambridge New York (2003)

    Book  MATH  Google Scholar 

  2. http://www.ligo.caltech.edu http://www.virgo.infn.it http://geo600.aei.mpg.de http://tamago.mtk.nao.ac.jp http://www.gravity.uwa.edu.au

  3. http://www.minigrail.nl/ http://www.roma1.infn.it/rog/explorer/explorer.html http://gravity.phys.lsu.edu/ http://www.gravity.uwa.edu.au http://www.das.inpe.br/ graviton

  4. T. De Donder, La Gravifique Einstenienne, Gauthier-Villars, Paris (1921).

    Google Scholar 

  5. T. De Donder, The Mathematical Theory of Relativity, Massachusetts Institute of Technology, Cambridge (1927).

    MATH  Google Scholar 

  6. K. Lanczos, Ann. Phys. 13, 621 (1922).

    Google Scholar 

  7. K. Lanczos, Z. Phys. 23, 537 (1923).

    Google Scholar 

  8. V. A. Fock, The Theory of Space, Time and Gravitation, Pergamon, London (1959).

    MATH  Google Scholar 

  9. Y. Choquet (Fourès)-Bruhat, Acta Matematica 88, 141 (1952).

    Article  Google Scholar 

  10. Y. Choquet (Fourès)-Bruhat, ‘Cauchy problem’ in Gravitation: An Introduction to Current Research, ed. by L. Witten, Wiley, New York (1962).

    Google Scholar 

  11. H. Friedrich, Commun. Math. Phys. 100, 525 (1985).

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carles Bona .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bona, C., Bona-Casas, C., Palenzuela-Luque, C. (2009). The 4D Spacetime. In: Elements of Numerical Relativity and Relativistic Hydrodynamics. Lecture Notes in Physics, vol 783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01164-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01164-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01163-4

  • Online ISBN: 978-3-642-01164-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics