Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 244))

Abstract

In this chapter, we apply the AFS theory to propose an elementary algorithm of fuzzy clustering. In the proposed approach, each cluster is interpreted by taking advantage of the semantics captured by the AFS logic. Within the framework of AFS theory, we develop new techniques of feature selection, concept categorization and characteristic description (i.e.,the characteristic description of an object or a group of objects using the fuzzy concepts) which are often encountered in tasks of machine learning and pattern recognition. The elementary fuzzy clustering algorithm is evolved to three more elaborate fuzzy clustering techniques by incorporating new techniques of feature selection, concept categorization and characteristic description. We show that they are simpler and produce more interpretable results when contrasted with some existing techniques. Several benchmark data and the evaluation data of 30 companies are considered to evaluate the effectiveness of the proposed AFS fuzzy clustering algorithms. We provide a detailed comparative analysis in which we compare the obtained results with those produced by some “conventional” methods such as FCM, k-means, and some newer algorithms including a two-level SOM-based clustering algorithm. The proposed algorithms can be applied to the data sets with mixed features such as sub-preference relations and even those including descriptions of human intuitive judgment. We show that the flexibility of the approach comes from the fact that the distance function and the class number need not be given beforehand. These two facets offers a far more higher flexible and contribute to a powerful framework for representing human knowledge and studying intelligent systems encountered in real world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bezdek, J.C.: Fuzzy mathematics in pattern classification. Ph.D. Dissertation, Appl. Math. Cornell Univ., Ithaca, NY (1973)

    Google Scholar 

  2. Bezdek, J.C.: A convergence theorem for the fuzzy ISODATA clustering algorithms. IEEE Trans. Pattern Anal. Machine Intell. 2(1), 1–8 (1980)

    Article  MATH  Google Scholar 

  3. Blake, C.L., Men, C.J.: UCI Repository of machine learning databases, University of California, Imine, Dept. of Information and Computer Science (1998–2003), http://www.ics.uci.edu/~mlearn/MLRepository.html

  4. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    MATH  Google Scholar 

  5. Baraldi, A., Alpaydin, E.: Constructive feedforward ART clustering networks—Part I and II. IEEE Trans. Neural Netw. 13(3), 645–677 (2002)

    Article  Google Scholar 

  6. Beliakov, G., King, M.: Density based fuzzy c-means clustering of non-convex patterns. European Journal of Operational Research 173, 717–728 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ben-Hur, A., Horn, D., Siegelmann, H., Vapnik, V.: Support vector clustering. J. Mach. Learn. Res. 2, 125–137 (2001)

    Article  Google Scholar 

  8. Blum, A., Langley, P.: Selection of Relevant Features and Examples in Machine Learning. Artificial Intelligence 97(1-2), 245–271 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Camastra, F., Verri, A.: A novel kernel method for clustering. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 801–805 (2005)

    Article  Google Scholar 

  10. Chen, Y.L., Hu, H.L.: An overlapping cluster algorithm to provide non-exhaustive clustering. European Journal of Operational Research 173, 762–780 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cord, A., Ambroise, C., Cocquerez, J.: Feature selection in robust clustering based on Laplace mixture. Pattern Recognition Letters 27, 627–635 (2006)

    Article  Google Scholar 

  12. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybernet 3(3), 32–57 (1974)

    Article  MathSciNet  Google Scholar 

  13. Dubois, D., Prade, H.: The three semantics of fuzzy sets. Fuzzy Sets and Systems 90, 141–150 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ding, R., Liu, X.D., Chen, Y.: The Fuzzy Clustering Algorithm Based on AFS Topology. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds.) FSKD 2006. LNCS (LNAI), vol. 4223, pp. 89–98. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. El-Sonbaty, Y., Ismail, M.A.: Fuzzy Clustering for Symbolic Data. IEEE Transactions on Fuzzy Systems 6(2), 195–204 (1998)

    Article  Google Scholar 

  16. Eltoft, T., de Figueiredo, R.: A new neural network for cluster-detection-and-labeling. IEEE Trans. Neural Netw. 9(5), 1021–1035 (1998)

    Article  Google Scholar 

  17. Fortuna, J., Capson, D.: Improved support vector classification using PCA and ICA feature space modification. Pattern Recognition 37, 1117–1129 (2004)

    Article  MATH  Google Scholar 

  18. Graver, J.E., Watkins, M.E.: Combinatorics with Emphasis on the Theory of Graphs. Springer, New York (1977)

    MATH  Google Scholar 

  19. Gustafson, D.E., Kessel, W.: Fuzzy clustering with a fuzzy covariance matrix. In: Proc. IEEE Conf. Decision Control, San Diego, CA, pp. 761–766 (1979)

    Google Scholar 

  20. Gabrys, B., Bargiela, A.: General fuzzy min-max neural network for clustering and classification. IEEE Trans. Neural Netw. 11(3), 769–783 (2000)

    Article  Google Scholar 

  21. Girolami, M.: Mercer kernel based clustering in feature space. IEEE Trans. Neural Netw. 13(3), 780–784 (2002)

    Article  Google Scholar 

  22. Gath, I., Geva, A.B.: Unsupervised optimal fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 773–781 (1989)

    Article  Google Scholar 

  23. Graver, J.E., Watkins, M.E.: Combinatorics with Emphasis on the Theory of Graphs. Springer, New York (1977)

    MATH  Google Scholar 

  24. Gowda, K.C., Diday, E.: Symbolic clustering using a new dissimilarity measure. Pattern Recogn 24(6), 567–578 (1991)

    Article  Google Scholar 

  25. Hathaway, R., Bezdek, J.: Fuzzy c-means clustering of incomplete data. IEEE Trans. Syst., Man, Cybern. 31(5), 735–744 (2001)

    Article  Google Scholar 

  26. Halmos, P.R.: Measure theory. Springer, New York (1974)

    MATH  Google Scholar 

  27. Jain, A., Zongker, D.: Feature Selection: Evaluation, Application, and Small Sample Performance. IEEE Trans. Pattern Analysis and Machine Intelligence 19(2), 153–157 (1997)

    Article  Google Scholar 

  28. Jenssen, R., Erdogmus, D.: Information cut for clustering using a gradient descent approach. Pattern Recognition 40, 796–806 (2007)

    Article  MATH  Google Scholar 

  29. Keller, J.M., Gray, M.R., Givens Jr., J.A.: A fuzzy K-nearest neighbors algorithm. IEEE Trans. Systems Man, Cybernet. SMC 15(4), 580–585 (1985)

    Google Scholar 

  30. Kiang, M.Y.: Extending the Kohonen self-organizing map networks for clustering analysis. Comput. Stat. Data Anal. 38, 161–180 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kohonen, T.: Self-Organized Formation of Topologically Correct Feature Maps. Biological Cybernetics 43(1), 59–69 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kim, K.H.: Boolean matrix Theory and Applications. Marcel Dekker, New York (1982)

    MATH  Google Scholar 

  33. Kirby, M.: Data Analysis: An empirical approach to dimensionality reduction and the study of Pattern. Wiley, New York (2000)

    Google Scholar 

  34. Kohavi, R., John, G.: Wrappers for Feature Subset Selection. Artificial Intelligence 97(1-2), 273–324 (1997)

    Article  MATH  Google Scholar 

  35. Koller, D., Sahami, M.: Toward Optimal Feature Selection. In: Proc. 13th Int’l Conf. Machine Learning, pp. 284–292 (1996)

    Google Scholar 

  36. Liu, X.D.: The Fuzzy Theory Based on AFS Algebras and AFS Structure. Journal of Mathematical Analysis and Applications 217, 459–478 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  37. Liu, X.D.: The Topology on AFS Algebra and AFS Structure. Journal of Mathematical Analysis and Applications 217, 479–489 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  38. Liu, X.D.: A new fuzzy model of pattern recognition and hitch diagnoses of complex systems. Fuzzy Sets and Systems 104, 289–297 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  39. Liu, X.D.: A New Mathematical Axiomatic System of Fuzzy Sets and Systems. Journal of Fuzzy Mathematics 3, 559–560 (1995)

    MATH  MathSciNet  Google Scholar 

  40. Liu, X.D.: The Fuzzy Sets and Systems Based on AFS Structure, EI Algebra and EII algebra. Fuzzy Sets and Systems 95, 179–188 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  41. Liu, X.D.: Two Algebra Structures of AFS structure. Journal of Fuzzy Mathematics 3, 561–562 (1995)

    MATH  MathSciNet  Google Scholar 

  42. Liu, X.D., Pedrycz, W., Zhang, Q.L.: Axiomatics Fuzzy sets logic. In: IEEE International Conference on Fuzzy Systems, vol. 1, pp. 55–60 (2003)

    Google Scholar 

  43. Liu, X.D., Pedrycz, W.: The Development of Fuzzy Decision Trees in the Framework of Axiomatic Fuzzy Set Logic. Applied Soft Computing 7, 325–342 (2007)

    Article  Google Scholar 

  44. Liu, X.D., Wang, W., Chai, T.Y.: The Fuzzy Clustering Analysis Based on AFS Theory. IEEE Transactions on Systems, Man and Cybernetics Part B 35(5), 1013–1027 (2005)

    Article  Google Scholar 

  45. Liu, X.D., Liu, W.Q.: Credit rating analysis with AFS fuzzy logic. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 1198–1204. Springer, Heidelberg (2005)

    Google Scholar 

  46. Liu, X.D., Chai, T.Y., Wang, W.: AFS Fuzzy Logic Systems and Its Applications to Model and Control. International Journal of Information and Systems Sciences 2(3), 285–305 (2006)

    MATH  MathSciNet  Google Scholar 

  47. Liu, X.D.: The Development of AFS Theory Under Probability Theory. International Journal of Information and Systems Sciences 3(2), 326–348 (2007)

    MATH  MathSciNet  Google Scholar 

  48. Liu, X.D., Pedrycz, W., Chai, T.Y., Song, M.L.: The Development of Fuzzy Rough Sets with the Use of Structures and Algebras of Axiomatic Fuzzy Sets. IEEE Transactions on Knowledge and Data Engineering 21(3), 443–462 (2009)

    Article  Google Scholar 

  49. Liu, X.D., Zhu, K.J., Huang, H.Z.: The Representations of Fuzzy Concepts Based on the Fuzzy Matrix Theory and the AFS Theory. In: IEEE International Symposium on Intelligent Control, Texas, USA, October 5-8 (2003)

    Google Scholar 

  50. Liu, X.D.: The Structure of Fuzzy Matrices. Journal of Fuzzy Mathematics 2, 311–325 (1994)

    MATH  MathSciNet  Google Scholar 

  51. Liu, X.D., Zhang, Q.L.: The Fuzzy Cognitive Maps Based on AFS Fuzzy Logic. Dynamics of Continuous, Discrete and Impulsive Systems 11(5-6), 787–796 (2004)

    MATH  Google Scholar 

  52. Liu, X.D., Chai, T.Y., Wang, W., Liu, W.Q.: Approaches to the Representations and Logic Operations for Fuzzy Concepts in the Framework of Axiomatic Fuzzy Set Theory I. Information Sciences 177, 1007–1026 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  53. Liu, X.D., Chai, T.Y., Wang, W., Liu, W.Q.: Approaches to the Representations and Logic Operations for Fuzzy Concepts in the Framework of Axiomatic Fuzzy Set Theory II. Information Sciences 177, 1027–1045 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  54. Liu, X.D., Ren, Y.: Novel Artificial Intelligent Techniques via AFS Theory: Feature Selection, Concept Categorization and Characteristic Description. Applied soft Computting (submitted)

    Google Scholar 

  55. Liu, X.D., Wang, X.C., Pedrycz, W., Chai, T.Y.: The Fuzzy Clustering via Axiomatic Fuzzy Set Theory. Pattern Recognition (submitted)

    Google Scholar 

  56. Liang, G.S., Chou, T.Y., Han, T.C.: Cluster Analysis Based on Fuzzy Equivalence Relation. European Journal of Operational Research 166, 160–171 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  57. Lee, H., Park, K., Bien, Z.: Iterative fuzzy clustering algorithm with supervision to construct probabilistic fuzzy rule base from numerical data. IEEE Transactions on Fuzzy Systems 16, 263–277 (2008)

    Article  Google Scholar 

  58. Li, Y., Dong, M., Hua, J.: Localized feature selection for clustering. Pattern Recognition Letters 29, 10–18 (2008)

    Article  Google Scholar 

  59. Law, M., Figueiredo, M., Jain, A.K.: Simultaneous Feature Selection and Clustering Using Mixture Models. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 124–138 (2004)

    Article  Google Scholar 

  60. Law, M.H.C., Figueiredo, M.A.T., Jain, A.K.: Simultaneous Feature Selection and Clustering Using Mixture Models. IEEE transactions on pattern analysis and machine intelligence 26(9), 1154–1166 (2004)

    Article  Google Scholar 

  61. Merz, C.J., Murphy, P.M.: UCI Repository for Machine Learning Data-Bases. Dept. of Information and Computer Science, University of California, Irvine, CA (1996), http://www.ics.uci.edu/~mlearn/MLRepository.html

  62. Mollineda, R., Vidal, E.: A relative approach to hierarchical clustering, in Pattern Recognition and Applications. In: Torres, M., Sanfeliu, A. (eds.) Frontiers in Artificial Intelligence and Applications, vol. 56, pp. 19–28. IOS Press, Amsterdam (2000)

    Google Scholar 

  63. Martinetz, T.E., Schulten, K.J.: Neural-Gas network for vector quantization and its application to time-series prediction. IEEE Trans. Neural Networks 4(4), 558–569 (1993)

    Article  Google Scholar 

  64. Mitchell, T.M.: Machine Learning. China Machine Press (2003)

    Google Scholar 

  65. Marcelloni, F.: Feature selection based on a modified fuzzy C-means algorithm with supervision. Information Sciences 151, 201–226 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  66. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems 14, 849–856 (2001)

    Google Scholar 

  67. Pedrycz, W.: Statistically grounded logic operators in fuzzy sets. European Journal of Operational Research (2008) doi:10.1016/j.ejor.2007.12.009

    Google Scholar 

  68. Pal, N., Bezdek, J., Tsao, E.: Generalized clustering networks and Kohonen’s self-organizing scheme. IEEE Trans. Neural Netw. 4(4), 549–557 (1993)

    Article  Google Scholar 

  69. Roberts, S.J., Everson, R., Rezek, I.: Maximum certainty data partitioning. Pattern Recognition 33, 833–839 (2000)

    Article  Google Scholar 

  70. Ren, Y., Song, M.L., Liu, X.D.: New approches to the fuzzy clustering via AFS theory. International Journal of Information and Systems Science 3(2), 307–325 (2007)

    MATH  MathSciNet  Google Scholar 

  71. Ren, Y., Wang, X.C., Liu, X.D.: Fuzzy clustering approaches based on AFS fuzzy logic I. In: Proceedings of the 6th World Congress on Control and Automation, Dalian, China, June 21 - 23 (2006)

    Google Scholar 

  72. Ren, Y.: Feature Selection, Concept Categorization and Characteristic Description Based on AFS Theory, Master Degree Thesis, Dalian Maritime university (2006)

    Google Scholar 

  73. Spath, H.: Cluster Dissection and Analysis: Theory FORTRAN Programs, Examples, translated by Goldschmidt, J., p. 226. Halsted Press, New York (1985)

    Google Scholar 

  74. Wu, K.L., Yang, M.S.: Alternative c-means clustering algorithms. Pattern Recognition 35, 2267–2278 (2002)

    Article  MATH  Google Scholar 

  75. Wang, G.J.: Theory of topological molecular lattices. Fuzzy Sets and Systems 47, 351–376 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  76. Wang, X.C.: The Fuzzy Clustering via Axiomatic Fuzzy Set Theory, Master Degree Thesis, Dalian Maritime university (2006)

    Google Scholar 

  77. Wang, L.D., Liu, X.D.: Concept analysis via rough set and AFS algebra. Information Sciences 178, 4125–4137 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  78. Wang, G.j.: Theory of topological molecular lattices. Fuzzy Sets Systems 47, 351–376 (1992)

    Article  MATH  Google Scholar 

  79. Wu, S.T., Chow, T.W.S.: Clustering of the Self-organizing Map Using a Clustering Validity Index Based on Inter-cluster and Intra-cluster Density. Pattern Recognition 37, 175–188 (2004)

    Article  MATH  Google Scholar 

  80. Yang, X., Song, Q., Wu, Y.: A robust deterministic annealing algorithm for data clustering. Data & Knowledge Engineering 62, 84–100 (2007)

    Article  Google Scholar 

  81. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  82. Zhang, L.S., Liu, X.D.: Concept lattice and AFS algebra. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds.) FSKD 2006. LNCS (LNAI), vol. 4223, pp. 290–299. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  83. Zhang, Y.J., Liang, D.Q., Tong, S.C.: On AFS algebra part I. Information Sciences 167, 263–286 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  84. Zhang, Y.J., Liang, D.Q., Tong, S.C.: On AFS algebra part II. Information Sciences 167, 287–303 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, X., Pedrycz, W. (2009). AFS Fuzzy Clustering Analysis. In: Axiomatic Fuzzy Set Theory and Its Applications. Studies in Fuzziness and Soft Computing, vol 244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00402-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00402-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00401-8

  • Online ISBN: 978-3-642-00402-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics