Skip to main content

Empirical Global Ocean Tide and Mean Sea Level Modeling Using Satellite Altimetry Data Case Study: A New Empirical Global Ocean Tide and Mean Sea Level Model Based on Jason-1 Satellite Altimetry Observations

  • Chapter
Nonlinear Time Series Analysis in the Geosciences

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 112))

Abstract

In this contribution an empirical approach to global ocean tide and Mean Sea Level (MSL) modeling based on satellite altimetry observations is presented with all details. Considering the fact that the satellite altimetry technique can provide sea level observations at the global scale, spherical harmonics defined for the whole range of spherical coordinates (0 ≤ λ ≤ 2π, and − π/2 ≤ ϕ≤ +π/2) could be among the possible choices for global ocean tide modeling. However, when applied for modeling of global ocean tide, spherical harmonics lose their orthogonality due to the following reasons: (1) Observation of sea surface is made over discrete points, and not as a continuous function, which is needed for having the orthogonality property of spherical harmonics in functional space. (2) The range of application of spherical harmonics for global ocean tide modeling is limited to the sea areas covered by satellite altimetry observations and not the whole globe, which is also required for the fluffiness of the orthogonality of spherical harmonics. In this contribution we show how a set of orthonormal base functions at the sea areas covered by the satellite altimetry observations can be derived from spherical harmonics in order to solve the lack of orthogonality. Using the derived orthonormal base functions, a global MSL model, and empirical global ocean tide models for six major semidiurnal and diurnal tidal constituents, namely, S2, M2, N2, K1, P1, and O1 as well as three long term tidal components, i.e., Mf, Mm, and Ssa, are developed based on six years of Jason-1 satellite altimetry sea level data as a numerical case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ardalan, A.A., Grafarend, E.W., Kakkuri, J.: National height datum, the Gauss-Listing geoid level value ω0 and its time variation (Baltic sea level project: epochs 1990.8, 1993.8, 1997.4). J Geod 76 (2002) 1–28

    Article  Google Scholar 

  2. Grafarend, E.W., Ardalan, A.A.: ω0: An estimate in the finnish height datum N60, epoch 1993.4, from twenty-five GPS points of the Baltic sea level project. J Geod 71 (1997) 673–679

    Article  Google Scholar 

  3. Burša, M., Kouba, J., Raděj, K., True, S.A., Vatrt, V., Vojtíšková, M.: Monitoring geoidal potential on the basis of TOPEX/Poseidon altimeter data and EGM96. Scientific Assembly of IAG, Rio de Janeiro (1997)

    Google Scholar 

  4. Burša, M., Raděj, K., Šima, K., True, S.A., Vatrt, V.: Determination of the geopotential scale factor from TOPEX/Poseidon satellite altimetry. Stud Geoph et Geod 41 (1997) 203–216

    Article  Google Scholar 

  5. Burša, M., Kouba, J., Muneendra, K., Müller, A., Raděj, K., True, S.A., Vatrt, V., Vojtíšková, M.: Geoidal geopotential and world height system. Studia Geoph. et Geod 43 (2000) 327–337

    Article  Google Scholar 

  6. Schwiderski, E.W.: Ocean tides, 1, global ocean tidal equations. Mar Geod 3 (1980) 161–217

    Article  Google Scholar 

  7. Le Provost, C., Genco, M.L., Lyard, F., Vincent, P., Canceil, P.: Spectroscopy of the world ocean tides from a finite-element hydrodynamic model. J Geophys Res 99 (1994) 24777–24797

    Article  Google Scholar 

  8. Lefèvre, F., Lyard, F.H., Le Provost, C.: FES98: A new global tide finite element solution independent of altimetry. Geophys Res Lett 27 (2000) 2717–2720

    Article  Google Scholar 

  9. Le Provost, C.: An analysis of SEASAT altimeter measurements over a coastal area: The English channel. J Geophys Res 88 (1983) 1647–1654

    Article  Google Scholar 

  10. Cartwright, D.E., Ray, R.D.: Oceanic tides from Geosat altimetry. J Geophys Res 95 (1990) 3069–3090

    Article  Google Scholar 

  11. Benada, J.R.: PO.DAAC Merged GDR TOPEX-Poseidon Generation B user’s handbook, version 2.0. Technical Report D-11007, Jet Propulsion Laboratory (JPL), 4800 Oak Grove Drive, Pasadena, California 91109 (1997)

    Google Scholar 

  12. Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox, C.M., Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp, R.H., Olson, T.R.: The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA Technical Paper NASA/TP-1998-206861, Goddard Space Flight Center, National Aeronautics and Space Administration (NASA), Greenbelt, MD (1998)

    Google Scholar 

  13. Andersen, O.B.: Global ocean tides from ERS-1 and TOPEX-POSEIDON altimetry. J Geophys Res 100 (1995) 25249–25260

    Article  Google Scholar 

  14. Andersen, O.B.: New ocean tide models for loading computations. Bull Int Mare Terr 102 (1995) 9256–9264

    Google Scholar 

  15. Cartwright, D.E., Ray, R.D.: Energetics of global ocean tides from Geosat altimetry. J Geophys Res 96 (1991) 16897–16912

    Article  Google Scholar 

  16. Cartwright, D.E., Ray, R.D., Sanchez, B.V.: Oceanic tide maps and spherical harmonic coefficients from Geosat altimetry. NASA Tech Memo 104544, Goddard Space Flight Center, National Aeronautics and Space Administration (NASA), Greenbelt, MD (1991)

    Google Scholar 

  17. Desai, S.D., Wahr, J.M.: Empirical ocean tide models estimated from TOPEX/Poseidon altimetry. J Geophys Res 100 (1995) 25205–25228

    Article  Google Scholar 

  18. Eanes, R.J.: Diurnal and semidiurnal tides from TOPEX/Poseidon altimetry. Eos Trans AGU, Spring Meeting Suppl, Baltimore, MD 75 (1994)

    Google Scholar 

  19. Eanes, R.: The CSR4.0 global ocean tide model. ftp://www.csr.utexas.edu/ pub/tide (2002)

    Google Scholar 

  20. Eanes, R.J., Bettadpur, S.V.: The CSR3.0 global ocean tide model: Diurnal and semi-diurnal ocean tides from TOPEX/Poseidon altimetry. Technical Report CRS-TM-96-05, Centre for Space Research, University of Texas, Austin, TX (1996)

    Google Scholar 

  21. Egbert, G.D., Bennett, A.F., Foreman, M.G.G.: TOPEX/Poseidon tides estimated using a global inverse model. J Geophys Res 99 (1994) 24821–24852

    Article  Google Scholar 

  22. Egbert, G.D.: Tidal data inversion: Interpolation and inference. Prog Oceanogr 40 (1997) 81–108

    Article  Google Scholar 

  23. Egbert, G.D., Bennett, A.F., Foreman, M.G.G.: TOPEX/POSEIDON tides estimated using a global inverse model. J Geophys Res 99 (1999) 24821–24852

    Article  Google Scholar 

  24. Egbert, G.D., Erofeeva, L.: Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Tech 19 (2002) 183–204

    Article  Google Scholar 

  25. Egbert, G.D., Ray, R.D.: Significant tidal dissipation in the deep ocean inferred from satellite altimeter data. Nature 405 (2000) 775–778

    Article  Google Scholar 

  26. Egbert, G.D., Ray, R.D.: Estimates of M2 tidal energy dissipation from TOPEX/POSEIDON altimetry data. J Geophys Res 106 (2001) 22475–22502

    Article  Google Scholar 

  27. Egbert, G.D., Ray, R.D.: Semi-diurnal and diurnal tidal dissipation from TOPEX-Poseidon altimetry. Geophys Res Lett 30 (2003) doi:10.1029/2003GL017676

    Google Scholar 

  28. Kagan, B.A., Kivman, G.A.: Modelling of global ocean tides with allowance for island effects. Ocean Dynam 45 (1993) 1–13

    Google Scholar 

  29. Kantha, L.H.: Barotropic tides in the global oceans from a nonlinear tidal model assimilating altimetric tides. 1. model description and results. J Geophys Res 100 (1995) 25283–25308

    Article  Google Scholar 

  30. Knudsen, P.: Global low harmonic degree models of seasonal variability and residual ocean tides from TOPEX/Poseidon altimeter data. J Geophys Res 99 (1994) 24643–24655

    Article  Google Scholar 

  31. Krohn, J.: A global ocean tide model with high resolution in shelf areas. Mar Geophys Res 7 (1984) 231–246

    Article  Google Scholar 

  32. Le Provost, C., Lyard, F., Molines, J.M., Genco, M.L., Rabilloud, F.: A hydrodynamic ocean tide model improved by assimilating a satellite altimeter-derived data set. J Geophys Res 103 (1998) 5513–5529

    Article  Google Scholar 

  33. Le Provost, C.: FES2002: A new version of the FES tidal solution series. Jason-1 Science Working Team Meeting, Biarritz, France (2002)

    Google Scholar 

  34. Lefèvre, F., Lyard, F.H., Le Provost, C.: FES99: A global tide finite element solution assimilating tide gauge and altimetric information. J Atmos Ocean Tech 19 (2002) 1345–1356

    Article  Google Scholar 

  35. Letellier, T.: Etude des ondes de marée sur les plateux continentaux. PhD thesis, Université de Toulouse III, Ecole Doctorale des Sciences de l’Univers, de l’Environnement et de l’Espace (2004)

    Google Scholar 

  36. Letellier, T., Lyard, F., Lefèvre, F.: The new global tidal solution: FES2004. Ocean Surface Topography Science Team Meeting, Saint Petersburg, FL (2004)

    Google Scholar 

  37. Ma, X.C., Shum, C.K., Eanes, R.J., Tapley, B.D.: Determination of ocean tides from the first year of TOPEX/Poseidon altimeter measurements. J Geophys Res 99 (1994) 24809–24820

    Article  Google Scholar 

  38. Matsumoto, K., Ooe, M., Sato, T., Segawa, J.: Ocean tide model obtained from TOPEX/Poseidon altimetry data. J Geophys Res 100 (1995) 25319–25330

    Article  Google Scholar 

  39. Matsumoto, K., Takanezawa, T., Ooe, M.: Ocean tide models developed by assimilating TOPEX/Poseidon altimeter data into hydrodynamical model: A global model and a regional model around Japan. J Oceanogr 56 (2000) 567–581

    Article  Google Scholar 

  40. Mazzega, P., Merge, M., Francis, O.: TOPEX/Poseidon tides: The OMP2 atlas. EOS Trans, AGU, Fall Meet suppl 75 (1994)

    Google Scholar 

  41. Ray, R.D., Sanchez, B.V., Cartwright, D.E.: Some extensions to the response method of tidal analysis applied to TOPEX/Poseidon altimetry. Eos Trans AGU, Spring Meet Suppl, Baltimore, MD 75 (1994)

    Google Scholar 

  42. Ray, R.D.: A global ocean tide model from TOPEX/Posidon altimetry: GOT99.2. NASA Tech Memo NASA/TM-1999-209478, Goddard Space Flight Center, Goddard Space Flight Center (1999)

    Google Scholar 

  43. Sanchez, B.V., Pavlis, N.K.: Estimation of main tidal constituents from TOPEX altimetry using a proudman function expansion. J Geophys Res 100 (1995) 25229–25248

    Article  Google Scholar 

  44. Schrama, E.J.O., Ray, R.D.: A preliminary tidal analysis of TOPEX/Poseidon altimetry. J Geophys Res 99 (1994) 24799–24808

    Article  Google Scholar 

  45. Schwiderski, E.W.: Ocean tides, 2, a hydronomical interpolations model. Mar Geod 3 (1980) 218–257

    Google Scholar 

  46. Schwiderski, E.W.: On charting global ocean tides. Rev Geophys Space Phys 18 (1980) 243–268

    Article  Google Scholar 

  47. Tierney, C.C., Kantha, L.H., Born, G.H.: Shallow and deep water global ocean tides from altimetry and numerical modeling. J Geophys Res 105 (2000) 11259–11277

    Article  Google Scholar 

  48. Wang, Y.M., Rapp, R.H.: Estimation of sea surface topography, ocean tides, and secular changes from Topex altimeter data. Technical Report 430, Dep Geod Sci Surv, Ohio State University, Columbus (1994)

    Google Scholar 

  49. Andersen, O.B., Woodworth, P.L., Flather, R.A.: Intercomparison of recent ocean tide models. J Geophys Res 100 (1995) 25261–25282

    Article  Google Scholar 

  50. Baker, T.F., Bos, M.S.: Validating earth and ocean tide models using tidal gravity measurements. Geophys J Int 152 (2003) 468–485

    Article  Google Scholar 

  51. Bos, M.S., Baker, T.F., Røthing, K., Plag, H.P.: Testing ocean tide models in the nordic seas with tidal gravity observations. Geophys J Int 150 (2002) 687–694

    Article  Google Scholar 

  52. King, M.A., Padman, L.: Accuracy assessment of ocean tide models around antarctica. Geophys Res Lett 32 (2005) doi:10.1029/2005GL023901

    Google Scholar 

  53. King, M.A., Penna, N.T., Clarke, P.J., King, E.C.: Validation of ocean tide models around antarctica using onshore GPS and gravity data. Geophys Res Lett 110 (2005) doi:10.1029/2004JB003390

    Google Scholar 

  54. Llubes, M., Mazzega, P.: Testing recent global ocean tide models with loading gravimetric data. Prog Oceanogr 40 (1997) 369–383

    Article  Google Scholar 

  55. Shum, C.K., Woodworth, P.L., Andersen, O.B., Egbert, G.D., Francis, O., King, C., Klosko, S.M., Le Provost, C., Li, X., Molines, J.M., Parke, M.E., Ray, R.D., Schlax, M.G., Stammer, D., Tierney, C.C., Vincent, P., Wunsch, C.I.: Accuracy assessment of recent ocean tide models. J Geophys Res 102 (1997) 25173–25194

    Article  Google Scholar 

  56. Urschl, C., Dach, R., Hugentobler, U., Schaer, S., Beutler, G.: Validating ocean tide loading models using GPS. J Geod 78 (2005) 616–625

    Article  Google Scholar 

  57. Groves, G.W., Reynolds, R.W.: An orthogonalized convolution method of tide prediction. J Geophys Res 80 (1975) 4131–4138

    Article  Google Scholar 

  58. Darwin, G.H.: Report of a committee for the harmonic analysis of tidal observations. British Association Report (1883) 48–118

    Google Scholar 

  59. Cherniawsky, J.Y., Foreman, M.G.G., Crawford, W.R., Henry, R.F.: Ocean tides from TOPEX/Poseidon sea level data. J Atmos Ocean Tech 18 (2001) 649–664

    Article  Google Scholar 

  60. Cherniawsky, J.Y., Foreman, M.G.G., Crawford, W.R., Beckley, B.D.: Altimeter observations of sea-level variability off the west coast of north america. Int J Remote Sens 25 (2004) 1303–1306

    Article  Google Scholar 

  61. Ponchaut, F., Lyard, F., Prevost, C.L.: An analysis of the tidal signal in the WOCE sea level dataset. J Atmos Ocean Tech 18 (2001) 77–91

    Article  Google Scholar 

  62. Smith, A.J.E., Ambrosius, B.A.C., Wakker, K.F., Woodworth, P.L., Vassie, J.M.: Comparison between the harmonic and response methods of tidal analysis using TOPEX-Poseidon altimetry. J Geod 71 (1997) 695–703

    Article  Google Scholar 

  63. Smith, A.J.E., Ambrosius, B.A.C., Wakker, K.F., Woodworth, P.L., Vassie, J.M.: Ocean tides from harmonic and response analysis on TOPEX-Poseidon altimetry. Remote Sensing: Earth, Ocean and Atmosphere Advances in Space Research 22 (1999) 1541–1548

    Google Scholar 

  64. Smith, A.J.E.: Ocean tides from satellite altimetry. PhD thesis, Delft Institute for Earth-Oriented Space Research, Delft University of Technology, Delft, The Netherlands (1997)

    Google Scholar 

  65. Mainville, A.: The altimetry-gravimetry problem using orthonormal base functions. Technical Report 373, Dep Geod Sci Surv, Ohio State University, Columbus (1987)

    Google Scholar 

  66. Hwang, C.: Orthogonal functions over the oceans and applications to the determination of orbit error, geoid and sea surface topography from satellite altimetry. Technical Report 414, Dep Geod Sci Surv, Ohio State University, Columbus (1991)

    Google Scholar 

  67. Hwang, C.: Spectral analysis using orthonormal functions with a case study on the sea surface topography. Geophys J Int 115 (1993) 1148–1160

    Article  Google Scholar 

  68. Hwang, C.: Orthonormal function approach for Geosat determination of sea surface topography. Mar Geod 18 (1995) 245–271

    Article  Google Scholar 

  69. Rapp, R.H., Zhang, C., Yi, Y.: Analysis of dynamic ocean topography using TOPEX data and orthonormal functions. J Geophys Res 101 (1995) 22583–22598

    Article  Google Scholar 

  70. Rapp, R.H., Zhang, C., Yi, Y.: Comparison of dynamic ocean topography using TOPEX data and orthonormal function. J Geophys Res 101 (1996) 22583–22598

    Article  Google Scholar 

  71. Rapp, R.H.: Ocean domains and maximum degree of spherical harmonic and orthonormal expansions. Technical Report NASA/CR-1999-208628, Goddard Space Flight Center, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD, Maryland 20771 (1999)

    Google Scholar 

  72. Doodson, A.T.: The analysis of tidal observations. Philosophical Transactions of the Royal Society of London, Series A, Containing papers of a Mathematical or Physical Character 227 (1928) 223–279

    Article  Google Scholar 

  73. Thong, N.C., Grafarend, E.W.: A spheroidal model of the terrestrial gravitational field. Manuscr Geod 14 (1989) 285–304

    Google Scholar 

  74. Heiskanen, W.A., Moritz, H.: Physical Geodesy. W.H.Freeman, New York (1967)

    Google Scholar 

  75. Davis, P.J.: Interpolation and Approximation. Dover Publications (1975)

    Google Scholar 

  76. Kreyszig, E.: Introductory Functional Analysis with applications. John Wiley and Sons, New York, Chi Chester, Toronto (1978)

    Google Scholar 

  77. Picot, N., Case, K., Desai, S., Vincent, P.: AVISO and PO.DAAC user handbook, IGDR and GDR Jason products. Technical Report JPL D-21352, Jet propulsion Laboratory (2004)

    Google Scholar 

  78. Yi, Y.: Determination of gridded mean sea surface from TOPEX, ERS-1 and GEOSAT altimeter data. Technical Report 434, Dep Geod Sci Surv, Ohio State University, Columbus (1995)

    Google Scholar 

  79. Rapp, R.H., Yi, Y.: Role of ocean variability and dynamic ocean topography in the recovery of the mean sea surface and gravity anomalies from satellite altimeter data. J Geod 71 (1997) 617– 629

    Article  Google Scholar 

  80. Wang, Y.M.: GSFC00 mean sea surface, gravity anomaly, and vertical gravity gradient from satellite altimeter data. J Geophys Res 106 (2001) 31167–31174

    Article  Google Scholar 

  81. Rummel, R., Gelderen, M.V., Koop, R., Schrama, E.J.O., Sanso, F., Brovelli, M., Miggliaccio, F., Sacerdote, F.: Spherical harmonic analysis of satellite gradiometry. Technical Report 39, Netherlands Geodetic Commission, Delft University of Technology, Faculty of Geodetic Engineering (1993)

    Google Scholar 

  82. Tsoulis, D.: Spherical harmonic computations with topographic/isostatic coefficients. Technical Report IAPG/FESG No. 3, Institute of Astronomical and Physical Geodesy (IAPG), Technical University of Munich (1999)

    Google Scholar 

  83. Golub, G.H., Loan, C.F.V.: Matrix Computations. Third edn. John Hopkins University Press, Baltimore, MD (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ardalan, A.A., Hashemi, H. (2008). Empirical Global Ocean Tide and Mean Sea Level Modeling Using Satellite Altimetry Data Case Study: A New Empirical Global Ocean Tide and Mean Sea Level Model Based on Jason-1 Satellite Altimetry Observations. In: Donner, R.V., Barbosa, S.M. (eds) Nonlinear Time Series Analysis in the Geosciences. Lecture Notes in Earth Sciences, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78938-3_9

Download citation

Publish with us

Policies and ethics