Skip to main content

Global Patterns of Nonlinearity in Real and GCM-Simulated Atmospheric Data

  • Chapter
Nonlinear Time Series Analysis in the Geosciences

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 112))

Abstract

We employed selected methods of time series analysis to investigate the spatial and seasonal variations of nonlinearity in the NCEP/NCAR reanalysis data and in the outputs of the global climate model HadCM3 of the Hadley Center. The applied nonlinearity detection techniques were based on a direct comparison of the results of prediction by multiple linear regression and by the method of local linear models, complemented by tests using surrogate data. Series of daily values of relative topography and geopotential height were analyzed. Although some differences of the detected patterns of nonlinearity were found, their basic features seem to be identical for both the reanalysis and the model outputs. Most prominently, the distinct contrast between weak nonlinearity in the equatorial area and stronger nonlinearity in higher latitudes was well reproduced by the HadCM3 model. Nonlinearity tends to be slightly stronger in the model outputs than in the reanalysis data. Nonlinear behavior was generally stronger in the colder part of the year in the mid-latitudes of both hemispheres, for both analyzed datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Paluš, D. Novotná: Testing for nonlinearity in weather records, Phys. Lett. A 193, 67 (1994)

    Article  Google Scholar 

  2. D. A. S. Patil, B. R. Hunt, J. A. Carton: Identifying low-dimensional nonlinear behavior in atmospheric data, Mon. Weather Rev. 129, 2116 (2001)

    Article  Google Scholar 

  3. J. Miksovsky, A. Raidl: Testing for nonlinearity in European climatic time series by the method of surrogate data, Theor. Appl. Climatol. 83, 21 (2006)

    Article  Google Scholar 

  4. M. C. Casdagli: Characterizing Nonlinearity in Weather and Epilepsy Data: A Personal View. In:Nonlinear Dynamics and Time Series, ed by C. D. Cutler, D. T. Kaplan (American Mathematical Society, Providence, Rhode Island 1997) pp 201–222

    Google Scholar 

  5. G. Sugihara, M. Casdagli, E. Habjan, et al.: Residual delay maps unveil global patterns of atmospheric nonlinearity and produce improved local forecasts, P. Natl. Acad. Sci. USA 96, 14210 (1999)

    Article  Google Scholar 

  6. J. Miksovsky, A. Raidl: Testing the performance of three nonlinear methods of time series analysis for prediction and downscaling of European daily temperatures, Nonlinear Proc. Geoph. 12, 979 (2005)

    Google Scholar 

  7. M. Paluš: Detecting nonlinearity in multivariate time series, Phys. Lett. A 213, 138 (1996)

    Article  Google Scholar 

  8. A. A. Tsonis: Probing the linearity and nonlinearity in the transitions of the atmospheric circulation, Nonlinear Proc. Geoph. 8, 341 (2001)

    Google Scholar 

  9. T. Schreiber, A. Schmitz: Surrogate time series, Physica D 142, 346 (2000)

    Google Scholar 

  10. I. Bartos, I. M. Jánosi: Nonlinear correlations of daily temperature records over land, Nonlinear Proc. Geoph. 13, 571 (2006)

    Google Scholar 

  11. V. Pérez-Muñuzuri, I. R. Gelpi: Application of nonlinear forecasting techniques for meteorological modeling, Ann. Geophysicae 18, 1349 (2000)

    Google Scholar 

  12. B. Tang, W. W. Hsieh, A. H. Monahan, F. T. Tangang: Skill comparisons between neural networks and canonical correlation analysis in predicting the equatorial Pacific sea surface temperatures, J. Climate 13, 287 (2000)

    Article  Google Scholar 

  13. A. Weichert, G. Bürger: Linear versus nonlinear techniques in downscaling, Climate Res. 10, 83 (1998)

    Article  Google Scholar 

  14. J. T. Schoof, S. C. Pryor: Downscaling temperature and precipitation: A comparison of regression-based methods and artificial neural networks, Int. J. Climatol. 21, 773 (2001)

    Article  Google Scholar 

  15. M. Casaioli, R. Mantovani, F. P. Scorzoni, et al.: Linear and nonlinear post-processing of numerically forecasted surface temperature, Nonlinear Proc. Geoph. 10, 373 (2003)

    Google Scholar 

  16. E. Eccel, L. Ghielmi, P. Granitto, et al.: Prediction of minimum temperatures in an alpine region by linear and non-linear post-processing of meteorological models, Nonlinear Proc. Geoph. 14, 211 (2007)

    Google Scholar 

  17. W. von Bloh, M. C. Romano, M. Thiel: Long-term predictability of mean daily temperature data, Nonlinear Proc. Geoph. 12, 471 (2005)

    Google Scholar 

  18. E. Kalnay, M. Kanamitsu, R. Kistler, et al.: The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteor. Soc. 77, 437 (1996)

    Google Scholar 

  19. R. Kistler, E. Kalnay, W. Collins, et al.: The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation, Bull. Amer. Meteor. Soc. 82, 247 (2001)

    Article  Google Scholar 

  20. C. Gordon, C. Cooper, C. A. Senior, et al.: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments, Clim. Dynam. 16, 147 (2000)

    Google Scholar 

  21. T. C. Johns, J. M. Gregory, W. J. Ingram, et al.: Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios, Clim. Dynam. 20, 583 (2003)

    Google Scholar 

  22. E. Ott, T. Sauer, J. A. Yorke (eds.): Coping with Chaos: Analysis of Chaotic Data and The Exploitation of Chaotic Systems(John Wiley & Sons, New York 1994)

    Google Scholar 

  23. H. Kantz, T. Schreiber: Nonlinear Time Series Analysis(Cambridge University Press, cambridge 1997)

    Google Scholar 

  24. D. S. Wilks: Statistical Methods in the Atmospheric Sciences, 2nd edn (Elsevier, Amsterdam 2006)

    Google Scholar 

  25. V. Venema, S. Bachner, H.W. Rust, C. Simmer: Statistical characteristics of surrogate data based on geophysical measurements, Nonlinear Proc. Geoph. 13, 449 (2006)

    Google Scholar 

  26. T. Schreiber, A. Schmitz: Improved surrogate data for nonlinearity tests, Phys. Rev. Lett. 77, 635 (1996)

    Article  Google Scholar 

  27. R. Hegger, H. Kantz, T. Schreiber: Practical implementation of nonlinear time series methods: The TISEAN package, CHAOS 9, 413 (1999)

    Google Scholar 

  28. S. M. Uppala, P. W. Kållberg, A. J. Simmons, et al.: The ERA-40 re-analysis, Quart. J. R. Meteorol. Soc. 131, 2961 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mikšovský, J., Pišoft, P., Raidl, A. (2008). Global Patterns of Nonlinearity in Real and GCM-Simulated Atmospheric Data. In: Donner, R.V., Barbosa, S.M. (eds) Nonlinear Time Series Analysis in the Geosciences. Lecture Notes in Earth Sciences, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78938-3_2

Download citation

Publish with us

Policies and ethics