Skip to main content

Methods to Detect Solitons in Geophysical Signals: The Case of the Derivative Nonlinear Schrödinger Equation

  • Chapter
Nonlinear Time Series Analysis in the Geosciences

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 112))

  • 1931 Accesses

Abstract

Methods to detect solitons and determine their parameters are considered. The first simple observational test for soliton identification is based on the determination of statistical relationships between amplitude, duration, and carrying frequency of the detected signals, and their comparison with the relevant relationships from the soliton theory. The second method is based on the solution of the direct scattering problem for the relevant nonlinear equations. As an example the Derivative Nonlinear Schrödinger (DNLS) equation has been considered. The integral reflection coefficient, which should rapidly drop when a signal is close to the N-soliton profile, has been used as a soliton detector. Application of this technique to numerically simulated signals shows that it is more efficient than the standard Fourier transform and can be used as a practical tool for the analysis of outputs from nonlinear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K. Stasiewicz: Heating of the solar corona by dissipative Alfven solitons, Phys. Rev. Lett., 96, 175003, doi:10.1103 /PhysRevLett.96.175003 (2006).

    Google Scholar 

  2. C.R. Ovenden, N.A. Shah, S.J. Schwartz: Alfven solitons in solar wind, J. Geophys. Res., 88, 6095–6101 (1983).

    Article  Google Scholar 

  3. A.V. Guglielmi, N.M. Bondarenko, V.N. Repin: Solitary waves in near-Earth environment, Doklady AN SSSR, 240, 47–50 (1978).

    Google Scholar 

  4. V.L. Patel, B. Dasgupta: Theory and observations of Alfven solitons in the finite beta magnetospheric plasma, Physica, D27, 387–398 (1987).

    Google Scholar 

  5. O.A. Pokhotelov, D.O. Pokhotelov, M.B. Gokhberg, F.Z. Feygin, L.Stenflo, P.K. Shukla: Alfven solitons in the Earth’s ionosphere and magnetosphere, J. Geophys. Res., 101, 7913–7916 (1996).

    Article  Google Scholar 

  6. E.N. Pelinovsky, N.N. Romanova: Nonlinear stationary waves in the atmosphere, Physics of the atmosphere and ocean, 13, 1169–1182 (1977).

    Google Scholar 

  7. V.I. Petviashvili, O.A Pokhotelov.: Solitary Waves in Plasmas and in the Atmosphere. (London: Gordon and Breach Sci. Publ., 1992).

    Google Scholar 

  8. F. Lund: Interpretation of the precursor to the 1960 Great Chilean Earthquake as a seismic solitary wave, Pure Appl. Geophys., 121, 17–26 (1983).

    Article  Google Scholar 

  9. C.I. Christov, V.P. Nartov: Random Point Functions and Large-Scale Turbulence. (Nauka-Siberian Branch, Novosibirsk, 1992).

    Google Scholar 

  10. C.I. Christov, V.P. Nartov: On a bifurcation emerging from the stochastic solution in a variational problem connected with plane Poiseuille flow, Doklady Acad. Sci. USSR, 277, 825–828 (1984).

    Google Scholar 

  11. A.V. Gurevich, N.G. Mazur, K.P. Zybin: Statistical limit in a completely integrable system with deterministic initial conditions, J. Experim. Theor. Phys., 90, 695–713 (2000).

    Article  Google Scholar 

  12. N.G. Mazur, V.V. Geogdzhaev, A.V. Gurevich, K.P. Zybin: A statistical limit in the solution of the nonlinear Schrödinger equation under deterministic initial conditions, J. Experim. Theor. Phys., 94, 834–851 (2002).

    Google Scholar 

  13. A.R. Osborne: ”Nonlinear Fourier analysis” in: Nonlinear Topics in Ocean Physics (Elsevier, Amsterdam, 1991) pp. 669–699.

    Google Scholar 

  14. A.R. Osborne: Nonlinear Fourier analysis for the infinite-interval Korteweg-de Vries equation I: An algorithm for the direct scatteringtransform, J. Computational Physics, 94, 284–313 (1991).

    Article  Google Scholar 

  15. T. Hada, R.J. Hamilton, C.F. Kennel: The soliton transform and a possible application to nonlinear Alfven waves in space, Geophys.Res. Lett., 20, 779–782 (1993).

    Article  Google Scholar 

  16. M. Ablowitz, H. Segur: Solitons and the Inverse Scattering Transform. (SIAM, Philadelphia, 1981).

    Google Scholar 

  17. C.F. Kennel, B. Buti, T. Hada, R. Pellat: Nonlinear, dispersive, elliptically polarized Alfven waves, Physics of Fluids, 31, 1949–1961 (1988).

    Article  Google Scholar 

  18. A.A. Mamun: Alfven solitary structures and their instabilities in a magnetized dusty plasma, Physica Scripta, 60, 365–369 (1999).

    Article  Google Scholar 

  19. S.R. Spangler: Kinetic effects on Alfven wave nonlinearity. II. The modified nonlinear wave equation, Phys. Fluids B, 2, 407–418 (1990).

    Article  Google Scholar 

  20. D.J. Kaup, A.J. Newell: An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., 19, 798–801 (1978).

    Article  Google Scholar 

  21. V.I. Karpman: Nonlinear waves in dispersive media. (Moscow, Nauka, 1973) 233pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mazur, N.G., Pilipenko, V.A., Glassmeier, KH. (2008). Methods to Detect Solitons in Geophysical Signals: The Case of the Derivative Nonlinear Schrödinger Equation. In: Donner, R.V., Barbosa, S.M. (eds) Nonlinear Time Series Analysis in the Geosciences. Lecture Notes in Earth Sciences, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78938-3_14

Download citation

Publish with us

Policies and ethics