Skip to main content

Describing Seismic Pattern Dynamics by Means of Ising Cellular Automata

  • Chapter
Nonlinear Time Series Analysis in the Geosciences

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 112))

Abstract

This chapter is dedicated to the description and testing of a new method of obtaining Probabilistic Activation Maps of seismic activity. This method is based upon two major concepts: Cellular Automata (CA) and Information Theory. The proposed method can be used in other fields, as long as the spatially extended system is described in terms of a Cellular Automata with two available states, +1 and −1, as in the Ising case described here. The crucial point is to obtain the rules of an Ising Cellular Automata that maps one pattern into its future state by means of an entropic principle. We have already applied this technique to the seismicity in two regions: Greece and the Iberian Peninsula. In this chapter, we study other regions to test if the observed behavior holds in general. For this purpose, we will discuss the results for California, Turkey and Western Canada. The Cellular Automaton rules obtained from the correponding catalogs are found to be well described by an Ising scheme. When these rules are applied to the most recent pattern, we obtain a Probabilistic Activation Map, where the probability of surpassing a certain energy (equivalent to a certain magnitude) in the next interval of time is represented, which is a useful information for seismic hazard assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shannon, C.E.: The mathematical theory of communication I. Bell Syst. Tech. J. 27 (1948) 379–423

    Google Scholar 

  2. Shannon, C.E.: The mathematical theory of communication II. Bell Syst. Tech. J. 27 (1948) 623–656

    Google Scholar 

  3. Shannon, C.E., Weaver, W.: The mathematical theory of communication. University of Illinois Press (1949)

    Google Scholar 

  4. Shaw, R.: The dripping faucet as a model chaotic system. The Science Frontier Express Series, Aerial Press, Santa Cruz, California (1984)

    Google Scholar 

  5. Vastano, J.A., Swinney, H.L.: Information transport in spatiotemporal systems. Phys. Rev. Lett. (1988) 1773–1776

    Google Scholar 

  6. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: An explanation of 1/f noise. Phys. Rev. Lett. 59 (1987) 381–384

    Article  Google Scholar 

  7. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality. Phys. Rev. A 38 (1988) 364–374

    Article  Google Scholar 

  8. Ito, K., Matsuzaki, M.: Earthquakes as self-organized critical phenomena. J. Geophys. Res. 95 (1990) 6853–6860

    Article  Google Scholar 

  9. Barriere, B., Turcotte, D.L.: A scale-invariant cellular automaton model for distributed seismicity. Geophys. Res. Lett. 18 (1991) 2011–2014

    Article  Google Scholar 

  10. Olami, Z., Feder, H.J.S., Christensen, K.: Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys. Rev. Lett. 68 (1992) 1244–1247

    Article  Google Scholar 

  11. Reid, H.F.: The mechanics of the California earthquake of april 18, 1906. Report of the State Earthquake Investigative Committee, Washington DC, Carnegie Institute (1910)

    Google Scholar 

  12. Hirata, T.: Fractal dimension of faults systems in Japan: fractal structure in rock fracture geometry at various scales. Pure Appl. Geophys. 131 (1989) 157–170

    Article  Google Scholar 

  13. Hirata, T., Imoto, M.: Multifractal analysis of spatial distribution of microearthquakes in the Kanto region. Geophys. J. Int. 107 (1991) 155–162

    Article  Google Scholar 

  14. Smalley, R.F., Chatelain, J.L., Turcotte, D.L., Prevot, R.: A fractal approach to the clustering of earthquakes: applications to the seismicity of the new hebrides. Bull. Seism. Soc. Amer. 77 (1987) 1368–1381

    Google Scholar 

  15. Omori, F.: On the aftershocks of earthquakes. J. Coll. Sci. 7 (1895) 111–200

    Google Scholar 

  16. Bufe, C.G., Varnes, D.J.: Predictive modeling of the seismic cycle of the greater San Francisco Bay regiony. J. Geophys. Res. 98 (1993) 9871–9883

    Article  Google Scholar 

  17. Sornette, D., Sammis, C.G.: Complex critical exponent from renormalization group theory of earthquakes: Implications for earthquake predictions. J. Phys. I France 5 (1995) 607–619

    Article  Google Scholar 

  18. Bowman, D.D., Ouillon, G., Sammis, C.G., Sornette, A., Sornette, D.: An observational test of the critical earthquake concept. J. Geophys. Res. 103 (1998) 24359–24372

    Article  Google Scholar 

  19. Huang, Y., Saleur, H., Sammis, C., Sornette, D.: Precursors, aftershocks, criticality and self-organized criticality. Europhys. Lett. 41 (1998) 43–48

    Article  Google Scholar 

  20. Bowman, D.D., King, G.C.P.: Accelerating seismicity and stress accumulation before large earthquakes. Geophys. Res. Lett. 28 (2001) 4039–4042

    Article  Google Scholar 

  21. Tiampo, K.F., Anghel, M.: Critical point theory and space-time pattern formation in precursory seismicity. Tectonophysics 413 (2006) 1–3

    Article  Google Scholar 

  22. Jiménez, A.: Morfodinámica de patrones sísmicos discretos mediante evolución entrópica y autómatas celulares: aproximación estocástica al peligro sísmico de la Península Ibérica y sus zonas sismogenéticas singulares. PhD thesis, University of Almería (2005) (Available at http://www.minas.upm.es/fundacion/jgs/ESP/index.html).

    Google Scholar 

  23. Jiménez, A., Tiampo, K.F., Posadas, A.M.: An Ising model for earthquake dynamics. Nonlin. Processes Geophys. 14 (2007) 5–15

    Article  Google Scholar 

  24. Gutenberg, B., Richter, C.: Earthquake magnitude, intensity, energy, and acceleration. Bull. Seism. Soc. Am. 46 (1956) 105–145

    Google Scholar 

  25. Jiménez, A., Posadas, A.M., Marfil, J.M.: A probabilistic seismic hazard model based on cellular automata and information theory. Nonlinear Processes in Geophysics 12 (2005) 381–396

    Google Scholar 

  26. Cover, T., Thomas, J.: Elements of information theory. Wiley and Sons (1991)

    Google Scholar 

  27. Daley, D.J., Vere-Jones, D.: Scoring probability forecasts for point processes: the entropy score and information gain. J. Appl. Probab. 41A (2004) 297–312

    Article  Google Scholar 

  28. Posadas, A.M., Hirata, T., Vidal, F., Correig, A.: Spatiotemporal seismicity patterns using mutual information application to southern Iberian peninsula (Spain) earthquakes. Phys. Earth Planet. Inter. 122 (2000) 269–276

    Article  Google Scholar 

  29. Vicsek, T.: Fractal growth phenomena. World Scientific (1992)

    Google Scholar 

  30. Ryan, M.J., Frater, M.R.: Communications and information systems. Argos Press (2002)

    Google Scholar 

  31. Jiménez, A., Posadas, A.M.: A Moore’s cellular automaton model to get probabilistic seismic hazard maps for different magnitude releases: A case study for Greece. Tectonophysics 423 (2006) 35–42

    Article  Google Scholar 

  32. USGS. http://www.usgs.gov/ (2008)

    Google Scholar 

  33. Stein, R.S., Barka, A.A., Dieterich, J.H.: Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophys. J. Int. 128 (1997) 594–604

    Article  Google Scholar 

  34. Hart, E.W., Bryant, W.A., Kahle, J.E., Manson, M.W., Bortugno, E.J.: Summary report: Fault evaluation program, 1986-1987, Mojave desert region and other areas. Technical report, Depart of Conservation, Division of Mines and Geology (1988)

    Google Scholar 

  35. Hart, E.W., Bryant, W.A., Manson, M.W., Kahle, J.E.: Summary report: Fault evaluation program, 1984-1985, southern coast ranges region and other areas. Technical report, Depart of Conservation, Division of Mines and Geology (1986)

    Google Scholar 

  36. Hart, E.W., Bryant, W.A., Wills, C.J., Treiman, J.A., Kahle, J.E.: Summary report: Fault evaluation program, 1987-1988, southwestern basin and range region and supplemental areas. Technical report, Depart of Conservation, Division of Mines and Geology (1989)

    Google Scholar 

  37. Jennings, C.W.: Fault activity map of California and adjacent areas with location and ages of recent volcanic eruptions. California Geologic Data Map Series, Map No. 6 (1994)

    Google Scholar 

  38. Petersen, M.D., Wesnousky, S.G.: Fault slip rates and earthquake histories for active faults in southern California. Bull. Seism. Soc. Am. 84 (1994) 1608–1649

    Google Scholar 

  39. Wesnousky, S.G.: Earthquakes, quaternary faults, and seismic hazards in southern California. J. Gophys. Res. 91 (1986) 12587–12631

    Article  Google Scholar 

  40. Bozkurt, E.: Neotectonics of Turkey-a synthesis. Geodinamica Acta 14 (2001) 3–30

    Article  Google Scholar 

  41. Nesrin, T.: GIS based geothermal potential assessment for Western Anatolia (2006)

    Google Scholar 

  42. Takahashi, K., Seno, T.: Diffusion of crustal deformation from disturbances arising at plate boundaries–a case of the detachment beneath the Izu Peninsula, central Honshu, Japan-. Earth Planets Space 57 (2005) 935–941

    Google Scholar 

  43. Ida, Y.: Slow-moving deformation pulses along tectonic faults. Phys. Earth Planet. Int. 9 (1974) 328–337

    Article  Google Scholar 

  44. Burridge, R., Knopoff, L.: Model and theoretical seismicity. Bull. Seism. Soc. Am. 57 (1967) 341–371

    Google Scholar 

  45. Toussaint, R., Pride, S.R.: Interacting damage models mapped onto Ising and percolation models. ArXiv Condensed Matter e-prints (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jiménez, A., Posadas, A.M., Tiampo, K.F. (2008). Describing Seismic Pattern Dynamics by Means of Ising Cellular Automata. In: Donner, R.V., Barbosa, S.M. (eds) Nonlinear Time Series Analysis in the Geosciences. Lecture Notes in Earth Sciences, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78938-3_12

Download citation

Publish with us

Policies and ethics