Skip to main content

The Human Role in Telerobotics

  • Chapter
Advances in Telerobotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 31))

Summary

This chapter introduces the main topics of a telerobotic system. It describes the architecture of such a system from a general point of view and emphasizes the interaction between a human operator and a robot that performs the task in the remote environment. Furthermore it focuses on multi-modal human system interfaces and explains the main features of haptic, auditory, and visual interfaces. Finally important issues for the measurement and evaluation of the attribute telepresence are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.B. Sheridan. Telerobotics. Automatica, 25(4):487–507, 1989.

    Article  Google Scholar 

  2. M. Buss and G. Schmidt. Control Problems in Multimodal Telepresence. In Advances in Control: Highlights of the 5th European Control Conference ECC’99, pages 65–101, 1999.

    Google Scholar 

  3. T. Burkert, J. Leupold, and G. Passig. A photorealistic predictive display. Presence: Teleoperators and Virtual Environments, 13(1):22–43, 2004.

    Article  Google Scholar 

  4. N. Chong, S. Kawabata, K. Ohba, T. Kotoku, K. Komoriya, K. Takase, and K. Tanie. Multioperator teleoperation of multirobot systems with time-delay: part 1-aids for collision-free control. Presence: Teleoperators and Virtual Environments, 11(3):277–291, 2002.

    Article  Google Scholar 

  5. N.A. Tanner and G. Niemeyer. Improving perception in time delayed telerobotics. International Journal of Robotics Research, 24(8):631–644, 2005.

    Article  Google Scholar 

  6. M. Massimino and T. Sheridan. Sensory Substitution for Force Feedback in Teleoperation. Presence: Teleoperators and Virtual Environments, 2(4):344–352, 1993.

    Google Scholar 

  7. M. Buss. Study on Intelligent Cooperative Manipulation. PhD thesis, University of Tokyo, Tokyo, 1994.

    Google Scholar 

  8. M. Buss and H. Hashimoto. Motion Scheme for Dextrous Manipulation in the Intelligent Cooperative Manipulation System—ICMS. In V. Graefe, editor, Intelligent Robots and Systems (IROS’94). Post-Conference Book, pages 279–294, Elsevier Science, Amsterdam, 1995.

    Google Scholar 

  9. N. Delson and H. West. Robot programming by human demonstration: Subtask compliance controller identification. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, pages 33–41, Yokohama, Japan, 1993.

    Google Scholar 

  10. H. Friedrich, J. Holle, and R. Dillmann. Interactive Generation of Flexible Robot Programs. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 538–543, Leuven, Belgium, 1998.

    Google Scholar 

  11. Y. Kunii and H. Hashimoto. Tele-teaching by human demonstration in virtual environment for robotic network system. In Proceedings of the IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico, pages 405–410, 1997.

    Google Scholar 

  12. J. Yang, Y. Xu, and C. Chen. Hidden markov model approach to skill learning and its application to telerobotics. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 396–402, Atlanta, Georgia, 1993.

    Google Scholar 

  13. H. Baier, M. Buss, F. Freyberger, and G. Schmidt G. Interactive Stereo Vision Telepresence for Correct Communication of Spatial Geometry. In Advanced Robotics, 17(3):219–233, 2003.

    Article  Google Scholar 

  14. R.E. Cole and D.L. Parker. Stereo TV improves manipulator performance. In Proceedings of the SPIE, 1083:18–27, Bellingham, WA, 1990.

    Google Scholar 

  15. M. Ferre, R. Aracil, and M. Navas. Stereoscopic Video Images for Telerobotic Applications. Journal of Robotic Systems, 22(3):131–146, 2005.

    Article  MATH  Google Scholar 

  16. J. Hsu, Z. Pizlo, D.M. Chelberg, C.F. Babbs, and E.J. Delp. Issues in the design of studies to test the effectiveness of stereo imaging. IEEE Trans. Syst. Man Cybernetics, Part A 26(6):810–819, 1996.

    Article  Google Scholar 

  17. L.B. Stelmach, W.J. Tam, and D.V. Meegan. Perceptual Basis of Stereoscopic Video. In Proceedings of the SPIE, 3639:260–265, 1999.

    Article  Google Scholar 

  18. W.S. Kim, S. Won, E. Stephen, T. Mitchell, H. Blake, and S. Lawrence. Quantitative evaluation of perspective and stereoscopic displays in three-axis manual tracking tasks. IEEE Trans Syst Man Cybernetics, 17(1):418–425, 1987.

    Google Scholar 

  19. E.B. Goldstein. Sensation and Perception. Wadsworth Publishing Company, 2002.

    Google Scholar 

  20. E.B. Goldstein. Cognitive Psychology. Wadsworth Publishing Company, 2004.

    Google Scholar 

  21. G. Burdea. Force and Touch Feedback for Virtual Reality. John Wiley and Sons Inc., 1996.

    Google Scholar 

  22. S.D. Laycock and A.M. Day. Recent developments and applications of haptic devices. Computer Graphics Forum, 22(2):117–132, 2003.

    Article  Google Scholar 

  23. J. Martins and J. Savall. Mechanisms for haptic torque feedback. In Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pages 611–614, 2005.

    Google Scholar 

  24. C. Yongblut, R.E. Johnston, S.H. Nash, R.A. Wienclaw, and C.A. Will. Review of virtual environment interface technology. IDA Paper P-3186, Institute of Defense Analysis (IDA), 1996.

    Google Scholar 

  25. M. Benali-Khoudja, et al. Tactile interfaces: a state-of-the-art survey. In Proceedings of 35th International Symposium on Robotics (ISR 2004), Paris, pages 1–9, 2004.

    Google Scholar 

  26. A. Kron and G. Schmidt. Multi-fingered tactile feedback from virtual and remote environments. In Proceedings of the 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS), pages 16–23, 2003.

    Google Scholar 

  27. K.A. Kaczmarek and P. Bach-y-Rita. Tactile displays. Virtual environments and advanced interface design, Oxford, England, Oxford University Press, 1993.

    Google Scholar 

  28. K. Shimoga. A Survey of Perceptual Feedback Issues in Dextrous Telemanipulation: Part II. Finger Touch Feedback. In Proceedings of IEEE Virtual Reality Annual International Symposium, New York, pages 271–279, 1993.

    Google Scholar 

  29. S. Ino, T. Izumi, M. Takahashi, and T. Ifukube. Psychophysical study on tactile sense produced by grasping forhand with sensory feedback. Systems and Computers in Japan, 24(13):89–97, 1993.

    Google Scholar 

  30. B.G. Witmer and M.J. Singer. Measuring Presence in Virtual Environments: A Presence Questionnaire. Presence: Teleoperators and Virtual Environments, Presence 7(3):225–240, 1998.

    Article  Google Scholar 

  31. T.B. Sheridan. Musings on Telepresence and Virtual Presence. Presence: Teleoperators and Virtual Environments, 1(1):120–126, 1992.

    Google Scholar 

  32. D. Schloerb. A Quantitative Measure of Telepresence. Presence: Teleoperators and Virtual Environments, 4(1):64–80, 1995.

    Google Scholar 

  33. W.A. IJsselsteijn, H. de Ridder, J. Freemanand, and S.E. Avons. Presence: Concept, determinants and measurement. In Proceedings of the SPIE, 3959:520–529, 2000.

    Article  Google Scholar 

  34. M. Usoh, E. Catena, S. Arman, and M. Slater. Using Presence Questionaires in Reality. Presence: Teleoperators and Virtual Environments, 9(5):497–503, 2000.

    Article  Google Scholar 

  35. B. Hannaford. A Design Framework for Teleoperators with Kinesthetic Feedback. IEEE Trans. on Robotics and Automation, 5(4):426–434, 1989.

    Article  Google Scholar 

  36. Y. Yokokohji and T. Yoshikawa. Bilateral Control of Master-Slave Manipulators for Ideal Kinesthetic Coupling-Formulation and Experiment. IEEE Trans. on Robotics and Automation, 10(5):605–620, 1994.

    Article  Google Scholar 

  37. D.A. Lawrence. Stability and Transparency in Bilateral Teleoperation. IEEE Trans. on Robotics and Automation, 9:624–637, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aracil, R. et al. (2007). The Human Role in Telerobotics. In: Ferre, M., Buss, M., Aracil, R., Melchiorri, C., Balaguer, C. (eds) Advances in Telerobotics. Springer Tracts in Advanced Robotics, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71364-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71364-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71363-0

  • Online ISBN: 978-3-540-71364-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics