Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 76))

  • 754 Accesses

Abstract

Though a variety of lasers have been used for holography over the years, a data storage system that is commercially viable requires a compact, efficient and ultimately low-cost source. The main requirements are coherence and wavelength compatibility with the material. Conventional semiconductor lasers, though compact and efficient, generally lack the coherence length required for holography. Similarly, gas lasers such as argon ion can be used in the laboratory to characterize materials, but the need for external cooling, the large size, and the immense power requirements preclude their use in real systems. In this section we first examine the general requirements for a laser suitable for practical holographic data storage, and then concentrate on two particular laser systems that meet our criteria: diode-pumped solid-state lasers and wavelength-stabilized semiconductor lasers. The two lasers that are particularly relevant are the diode-pumped frequency-doubled Nd:YAG, and the InGaP DFB lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett., 17, 1471 (1992).

    Article  ADS  Google Scholar 

  2. G.A. Rakuljic and V. Leyva, “Volume holographic narrowband optical filter,” Opt. Lett., 18, 459 (1993).

    Article  ADS  Google Scholar 

  3. L. Hesselink, Paper presented at OSA Annual Meeting, Rochester, NY, 20 to 24 October 1996.

    Google Scholar 

  4. T.H. Maiman, “Stimulated optical radiation in ruby masers,” Nature, 187, 493 (1960).

    Article  ADS  Google Scholar 

  5. S. Nakamura and G. Fasol, The blue laser diode, GaN based emitters and lasers Springer, 1997.

    Google Scholar 

  6. T. Chong and K. Kishino, “660 nm wavelength GaInAsP/A1GaAs distributed feedback lasers,” Electron. Lett., 24, 416 (1988).

    Article  Google Scholar 

  7. M. Korn, T. Korfer, A. Forchel, and P. Roentgen, “Fabrication and optical characterization of first-order DFB GaInP/A1GaInP laser structures at 639 µm,” Electron. Lett., 26, 614 (1990).

    Article  ADS  Google Scholar 

  8. D.-H. Jang, Y. Kaneko, and K. Kishino, “Shortest wavelength (607 nm) operations of GaInP/AIInP distributed Bragg reflector lasers,” Electron. Lett., 28, 428 (1992) .

    Article  ADS  Google Scholar 

  9. H.-P. Gauggel, C. Geng, H. Schweizer, F. Barth, J. Hommel, R. Winterhoff, and F. Scholz, “Fabrication and operation of first-order GaInP/A1GaInP DFB lasers at room temperature”, Electron. Lett., 31, 367 (1995).

    Article  Google Scholar 

  10. B. Pezeshki, J.S. Osinski, H. Zhao, A. Mathur A., and T.L. Koch, “GaInP/A1GaInP 670 nm singlemode DBR laser,” Electron. Lett., 32, 2241 (1996) .

    Article  Google Scholar 

  11. H.-P. Gauggel, H. Artmann, C. Geng, F. Scholz, and H. Schweizer, “Wide-range tunability of GaInP-AlGaInP DFB lasers with superstructure gratings,” IEEE Photon. Technol. Lett., 9, 14 (1997) .

    Article  ADS  Google Scholar 

  12. H.-P. Gauggel, J. Kuhn, C. Jerichow, C. Geng, F. Scholz and H. Schweizer, “Low threshold CW operation of GaInP/A1GaInP DFB lasers at 680 nm,” Electron. Lett., 33, 1385 (1997).

    Article  Google Scholar 

  13. B. Pezeshki, M. Zelinski, H. Zhao, and V. Agrawal, “40 mW 650 nm distributed feedback lasers,” IEEE Photon. Tech. Lett., 10, 36 (1998) .

    Article  ADS  Google Scholar 

  14. B. Pezeshki, M. Zelinski, and V. Agrawal, “635 nm 20 mW DFB laser,” Electron. Lett., 34, 987 (1998).

    Article  Google Scholar 

  15. B. Pezeshki, J.S. Osinski, M. Zelinski, S. O’Brien, and A. Mathur, “660 nm 250 mW GaInP/AIInP monolithically integrated master oscillator power amplifier,” Electron. Lett., 33, 1314 (1997).

    Article  Google Scholar 

  16. V.V. Wong, S.D. DeMars, A. Schoenfelder, and R. Lang, “Angled-grating distributed-feedback laser with 1.2 W CW single-mode diffraction limited output at 1.06 µm,” in CLEO ‘98, Technical Digest, 34–35 (1998).

    Google Scholar 

  17. B. Pezeshki, M. Hagberg, M. Zelinski, S.D. DeMars, E. Kolev, and R.J. Lang, “400 mW single frequency 660 nm semiconductor laser,” IEEE Photon. Technol. Lett., 11, 791 (1999).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pezeshki, B., Orlov, S.S. (2000). Laser Sources. In: Coufal, H.J., Psaltis, D., Sincerbox, G.T. (eds) Holographic Data Storage. Springer Series in Optical Sciences, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47864-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47864-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53680-9

  • Online ISBN: 978-3-540-47864-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics