Skip to main content

Photopolymer Systems

  • Chapter
Holographic Data Storage

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 76))

Abstract

Photopolymers, in the context of this chapter, are systems of organic molecules that rely on photoinitiated polymerization to record volume phase holograms. Characteristics such as good light sensitivity, real-time image development, large dynamic range, good optical properties, format flexibility, good image stability, and relatively low cost make photopolymers one of the most promising materials for write-once, read-many (WORM) holographic data storage applications. We first present a brief description of the chemistry of photopolymers. This is followed by a discussion of photopolymer properties that are particularly relevant to the requirements of recording holograms for data storage. The intent of this chapter is to provide the nonspecialist with an appreciation of the possibilities and promise offered by photopolymers as candidate materials for holographic data storage, and to highlight areas where additional material development is desired. Readers interested in other aspects of photopolymers in holography can consult reviews by Lessard and Manivannan [1], Lougnot [2], and Colburn [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.A. Lessard and G. Manivannan, Eds., Selected Papers on Photopolymers, MS114, SPIE Opt. Eng. Press, Bellingham, Washington(1996).

    Google Scholar 

  2. D.J. Lougnot, “Self-processing photopolymer materials for holographic recording”, Crit. Rev. Opt. Sci. Technol., CR63, 190–213 (1996).

    Google Scholar 

  3. W.S. Colburn, J. Imaging Sci. Technol, 44, 443–456 (1997).

    Google Scholar 

  4. M.L. Schilling, V.L. Colvin, L. Dhar, A.L. Harris, F.C. Schilling, H.E. Katz, T. Wysocki, A. Hale, L.L. Blyer, and C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater., 11, 247–254 (1999).

    Article  Google Scholar 

  5. G. Odian, Principles of Polymerization, John Wiley and Sons, New York, 2 Ed. (1981).

    Google Scholar 

  6. J.P. Fouassier and J.F. Rabek, Radiation Curing in Polymer Science and Technology, Elsevier Applied Science, London, (1993).

    Book  Google Scholar 

  7. D.A. Waldman, R.T. Ingwall, P.K. Dal, M.G. Horner, E.S. Kolb, H.-Y.S. Li, R.A. Minns, and H.G. Schild, “Cationic ring-opening photopolymerization methods for holography,” Proc. SPIE, 2689, 127–141 (1996).

    Article  ADS  Google Scholar 

  8. K. Matyjaszewski, Ed., Cationic Polymerizations, Marcel Dekker, New York (1996).

    Google Scholar 

  9. B.M. Monroe and G.C. Weed, Photoinitiators for Free-Radical-Initiated Photoimaging Systems, Chem. Rev., 93, 435–448 (1993).

    Article  Google Scholar 

  10. P.S. Pappas, B.C. Pappas, L.R. Gatechair, and J.H. Jilek, “Photoinitiated cationic polymerization IV. Direct and sensitized photolysis of aryl iodonium and sulfonium salts,” Polym. Photochem., 5, 1–22 (1984) .

    Article  Google Scholar 

  11. A.W. Weber, W.K. Smothers, T.J. Trout, and D.J. Mickish, “Hologram recording in Du Pont’s new photopolymer materials” , Proc. SPIE, 1212, 30–39 (1990).

    Article  ADS  Google Scholar 

  12. S.H. Stevenson, “Du Pont multicolor holographic recording film,” Proc. SPIE, 3011, 231–241 (1997).

    Article  ADS  Google Scholar 

  13. N. Noirett, C. Meyer, and D.J. Lougnot, “Photopolymers for holographic recording: V. Self-processing systems with near infrared sensitivity,” Pure Appl. Opt., 3, 55–71 (1994).

    Article  ADS  Google Scholar 

  14. C. Braeuchle, U.P. Wild, D.M. Burland, G.C. Bjorklund, and D.C. Alvarez, “Two-photon holographic recording with continuous-wave lasers in the 750–1100 nm range,” Opt. Lett., 7, 177–179 (1982).

    Article  ADS  Google Scholar 

  15. D.J. Lougnot, D. Ritzenthaler, C. Carre, and J.P. Fouassier, “A new gated system for two-photon holographic recording in the near infrared,” J. Appl. Phys., 63, 4841–4848 (1988).

    Article  ADS  Google Scholar 

  16. W.K. Smothers, B.M. Monroe, A.M. Weber, and D.E. Keys, “Photopolymers for holography,” Proc. SPIE, 1212, 20–29 (1990).

    Article  ADS  Google Scholar 

  17. D.A. Waldman; unpublished results.

    Google Scholar 

  18. D.A. Waldman, H.-Y.S. Li, and E.A. Cetin, “Holographic recording properties in thick films of ULSH-500 photopolymer,” Proc. of SPIE, Diffractive and Holographic Device Technologies and Applications V, 3291, 89–103 (1998).

    ADS  Google Scholar 

  19. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J., 48, 2909 (1969).

    Google Scholar 

  20. W.J. Tomlinson and E.A. Chandross. “Organic photochemical refractive-index image recording systems,” Advances in Photochemistry, 12, 201–276 (1980).

    Article  Google Scholar 

  21. D.W. van Krevelen, Properties of Polymers, Elsevier, Amsterdam, 1990, Chap. 10, pp. 287–296.

    Google Scholar 

  22. R.K. Sadhir and R.M. Luck, Expanding Monomers, CRC Press, Boca Raton, 1992.

    Google Scholar 

  23. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt., 41, 1929–1939 (1994).

    Article  ADS  Google Scholar 

  24. D.J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording VI. Some basic ideas for modeling the kinetics of the recording processm,” Pure Appl. Opt., 6, 225–245 (1997).

    Article  ADS  Google Scholar 

  25. V.L. Colvin, R.G. Larson, A. Haris, and M.L. Shilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys., 81, 5914–5923 (1997).

    Article  ADS  Google Scholar 

  26. H.-Y.S. Li and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt., 33, 3764–3774 (1994).

    Article  ADS  Google Scholar 

  27. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt., 35, 2389–2398 (1996).

    Article  ADS  Google Scholar 

  28. A.R. Schultz and M.G. Joshi, “Kinetics of photoinitiated free-radical polymerization,” J. Polym. Sci., Polym. Phys. Ed., 22, 1753–1771 (1984).

    Article  ADS  Google Scholar 

  29. L. Solymar and D.J. Cooke, Volume Holography and Volume Gratings, Academic Press, New York, (1981).

    Google Scholar 

  30. D.A. Waldman, H.-Y.S. Li and M.G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening volume hologram recording material,” J. Imaging Sci. Technol., 41, 5, 497–514 (1997).

    Google Scholar 

  31. N. Uchida, “Calculation of diffraction efficiency in hologram gratings attenuated along the direction perpendicular to the grating vector,” J. Opt. Soc. Am., 63, 280 (1973).

    Article  ADS  Google Scholar 

  32. J.E. Dietz and N.A. Peppas, “Reaction kinetics and chemical changes during polymerization of multifunctional (meth) acrylated for the production of highly cross-linked polymers used in information storage systems,” Polymer, 38, 3767–3781 (1997).

    Article  Google Scholar 

  33. J.G. Kloosterboer, “Network formation by chain crosslinking photopolymerization and its application in electronics,” Adv. Polym. Sci., 84, 1–62 (1988).

    Article  Google Scholar 

  34. F.H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett., 18, 11, 915 (1993).

    Article  ADS  Google Scholar 

  35. K. Curtis, A. Pu, and D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett., 19, 993–994 (1994).

    Article  ADS  Google Scholar 

  36. D.L. Staebler, W.J. Burke. W. Phillips, and J.J. Amodei, Appl. Phys. Lett., 26, 182–184 (1975).

    Article  ADS  Google Scholar 

  37. F.H. Mok, M.C. Tackitt, and H.M. Stoll, Opt. Lett., 16, 11, 605 (1991).

    Article  ADS  Google Scholar 

  38. A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng., 35, 10, 2824–2829 (1996).

    Article  ADS  Google Scholar 

  39. L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, “Holographic storage of multiple highcapacity digital data pages in thick photopolymer systems,” Opt. Lett., 23, 1710–1712 (1998).

    Article  ADS  Google Scholar 

  40. R.T. Ingwall, D.A. Waldman, and R.M. Shelby, Optical Society of America, Fall Meeting, Baltimore (1998).

    Google Scholar 

  41. M.-P. Bernal, H. Coufal, R.K. Grygier, J.A. Hoffnagle, C.M. Jefferson, R.M. Macfarlane, R.M. Shelby, G.T. Sincerbox, P. Wimmer, and G. Wittmann, “A precision tester for studies of holographic storage materials and recording physics,” Appl. Opt., 35, 2360–2374 (1996).

    Article  ADS  Google Scholar 

  42. D.A. Waldman, R.T. Ingwall, H.-Y.S. Li, and R.M. Shelby, International Society for Optical Engineering, Annual Meeting, Denver (1999).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ingwall, R.T., Waldman, D. (2000). Photopolymer Systems. In: Coufal, H.J., Psaltis, D., Sincerbox, G.T. (eds) Holographic Data Storage. Springer Series in Optical Sciences, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47864-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47864-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53680-9

  • Online ISBN: 978-3-540-47864-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics