Skip to main content

Individualized Target Therapy of Malignant Lymphomas: An Outlook

  • Chapter
Targeted Therapies in Cancer

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 176))

  • 1168 Accesses

Abstract

Hodgkin and non-Hodgkin lymphomas represent clonal malignant expansions of B or T cells that are at various stages of maturation. As our understanding of the immunophenotype, cytogenetics and molecular biology of the lymphomas broadened, treatment of these neoplasms is evolving to include targeted therapies directed against tumour-characteristic molecules and specific signalling pathways critical to lymphomagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alizadeh AA, Eisen MB, Davis RE, et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511

    Article  PubMed  CAS  Google Scholar 

  • Argatoff LH, Connors JM, Klasa RJ, Horsman DE, Gascoyne RD (1997) Mantle cell lymphoma: a clinicopathologic study of 80 cases. Blood 89:2067–2078

    PubMed  CAS  Google Scholar 

  • Baldwin AS (2001) Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest 107:241–246

    Article  PubMed  CAS  Google Scholar 

  • Bargou RC, Leng C, Krappmann D, et al (1996) High-level nuclear NF-kappa B and Oct-2 is a common feature of cultured Hodgkin/Reed-Sternberg cells. Blood 87:4340–4347

    PubMed  CAS  Google Scholar 

  • Borchmann P, Treml JF, Hansen H, et al (2003) The human anti-CD30 antibody 5F11 shows in vitro and in vivo activity against malignant lymphoma. Blood 102:3737–3742

    Article  PubMed  CAS  Google Scholar 

  • Carella AM (1992) Indications for autologous bone marrow transplantation in Hodgkin’s disease. Leuk Lymphoma 7Suppl:21–22

    Article  PubMed  Google Scholar 

  • Cartron G, Watier H, Golay J, Solal-Celigny P (2004) From the bench to the bedside: ways to improve rituximab efficacy. Blood 104:2635–2642

    Article  PubMed  CAS  Google Scholar 

  • Cataldo KA, Jalal SM, Law ME, et al (1999) Detection of t(2;5) in anaplastic large cell lymphoma: comparison of immunohistochemical studies, FISH, and RT-PCR in paraffin-embedded tissue. Am J Surg Pathol 23:1386–1392

    Article  PubMed  CAS  Google Scholar 

  • Chan AC, Iwashima M, Turck CW, Weiss A (1992) ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain. Cell 71:649–662

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Apgar J, Huynh L, et al (2005) ZAP-70 directly enhances IgM signaling in chronic lymphocytic leukemia. Blood 105:2036–2041

    Article  PubMed  CAS  Google Scholar 

  • Crespo M, Bosch F, Villamor N, et al (2003) ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 348:1764–1775

    Article  PubMed  CAS  Google Scholar 

  • Davis RE, Brown KD, Siebenlist U, Staudt LM (2001) Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 194:1861–1874

    Article  PubMed  CAS  Google Scholar 

  • DeVita VT Jr, Hubbard SM (1993) Hodgkin’s disease. N Engl J Med 328:560–565

    Article  PubMed  Google Scholar 

  • Diehl V, Franklin J, Hasenclever D, et al (1998) BEACOPP: a new regimen for advanced Hodgkin’s disease. German Hodgkin’s Lymphoma Study Group. Ann Oncol 9[Suppl 5]:S67–S71

    Article  PubMed  Google Scholar 

  • Durkop H, Latza U, Hummel M, Eitelbach F, Seed B, Stein H (1992) Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin’s disease. Cell 68:421–427

    Article  PubMed  CAS  Google Scholar 

  • Durkop H, Foss HD, Demel G, Klotzbach H, Hahn C, Stein H (1999) Tumor necrosis factor receptor-associated factor 1 is overexpressed in Reed-Sternberg cells of Hodgkin’s disease and Epstein-Barr virus-transformed lymphoid cells. Blood 93:617–623

    PubMed  CAS  Google Scholar 

  • Falini B, Pileri S, Zinzani PL, et al (1999) ALK+ lymphoma: clinico-pathological findings and outcome. Blood 93:2697–2706

    PubMed  CAS  Google Scholar 

  • Gascoyne RD, Adomat SA, Krajewski S, et al (1997) Prognostic significance of Bcl-2 protein expression and Bcl-2 gene rearrangement in diffuse aggressive non-Hodgkin’s lymphoma. Blood 90:244–251

    PubMed  CAS  Google Scholar 

  • Gascoyne RD, Aoun P, Wu D, et al (1999) Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma. Blood 93:3913–3921

    PubMed  CAS  Google Scholar 

  • Ghosh S, Karin M (2002) Missing pieces in the NF-kappaB puzzle. Cell 109[Suppl]:S81–S96

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, May MJ, Kopp EB (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260

    Article  PubMed  CAS  Google Scholar 

  • Hinz M, Lemke P, Anagnostopoulos I, et al (2002) Nuclear factor kappaB-dependent gene expression profiling of Hodgkin’s disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J Exp Med 196:605–617

    Article  PubMed  CAS  Google Scholar 

  • Hopken UE, Foss HD, Meyer D, et al (2002) Up-regulation of the chemokine receptor CCR7 in classical but not in lymphocyte-predominant Hodgkin disease correlates with distinct dissemination of neoplastic cells in lymphoid organs. Blood 99:1109–1116

    Article  PubMed  CAS  Google Scholar 

  • Kadin ME, Morris SW (1998) The t(2;5) in human lymphomas. Leuk Lymphoma 29:249–256

    PubMed  CAS  Google Scholar 

  • Kaneko Y, Frizzera G, Edamura S, et al (1989) A novel translocation, t(2;5)(p23;q35), in childhood phagocytic large T-cell lymphoma mimicking malignant histiocytosis. Blood 73:806–813

    PubMed  CAS  Google Scholar 

  • Karin M, Ben Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663

    Article  PubMed  CAS  Google Scholar 

  • Karin M, Yamamoto Y, Wang QM (2004) The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 3:17–26

    Article  PubMed  CAS  Google Scholar 

  • Krappmann D, Emmerich F, Kordes U, Scharschmidt E, Dorken B, Scheidereit C (1999) Molecular mechanisms of constitutive NF-kappaB/Rel activation in Hodgkin/Reed-Sternberg cells. Oncogene 18:943–953

    Article  PubMed  CAS  Google Scholar 

  • Lamant L, Meggetto F, al Saati T, et al (1996) High incidence of the t(2;5)(p23;q35) translocation in anaplastic large cell lymphoma and its lack of detection in Hodgkin’s disease. Comparison of cytogenetic analysis, reverse transcriptase-polymerase chain reaction, and P-80 immunostaining. Blood 87:284–291

    PubMed  CAS  Google Scholar 

  • Le Beau MM, Bitter MA, Larson RA, et al (1989) The t(2;5)(p23;q35): a recurring chromosomal abnormality in Ki-1-positive anaplastic large cell lymphoma. Leukemia 3:866–870

    PubMed  Google Scholar 

  • Marafioti T, Hummel M, Foss HD, et al (2000) Hodgkin and reed-sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood 95:1443–1450

    PubMed  CAS  Google Scholar 

  • Mason DY, Bastard C, Rimokh R, et al (1990) CD30-positive large cell lymphomas (‘Ki-1 lymphoma’) are associated with a chromosomal translocation involving 5q35. Br J Haematol 74:161–168

    PubMed  CAS  Google Scholar 

  • Mathas S, Lietz A, Anagnostopoulos I, et al (2004) c-FLIP mediates resistance of Hodgkin/Reed-Sternberg cells to death receptor-induced apoptosis. J Exp Med 199:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Morris SW, Kirstein MN, Valentine MB, et al (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263:1281–1284

    Article  PubMed  CAS  Google Scholar 

  • Muschen M, Re D, Brauninger A, et al (2000) Somatic mutations of the CD95 gene in Hodgkin and Reed-Sternberg cells. Cancer Res 60:5640–5643

    PubMed  CAS  Google Scholar 

  • Ong ST, Le Beau MM (1998) Chromosomal abnormalities and molecular genetics of non-Hodgkin’s lymphoma. Semin Oncol 25:447–460

    PubMed  CAS  Google Scholar 

  • Pulford K, Lamant L, Morris SW, et al (1997) Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood 89:1394–1404

    PubMed  CAS  Google Scholar 

  • Pulford K, Morris SW, Turturro F (2004) Anaplastic lymphoma kinase proteins in growth control and cancer. J Cell Physiol 199:330–358

    Article  PubMed  CAS  Google Scholar 

  • Reed JC (1997) Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol 34:9–19

    PubMed  CAS  Google Scholar 

  • Reff ME, Carner K, Chambers KS, et al (1994) Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83:435–445

    PubMed  CAS  Google Scholar 

  • Rimokh R, Magaud JP, Berger F, et al (1989) A translocation involving a specific breakpoint (q35) on chromosome 5 is characteristic of anaplastic large cell lymphoma (‘Ki-1 lymphoma’). Br J Haematol 71:31–36

    PubMed  CAS  Google Scholar 

  • Rimokh R, Berger F, Delsol G, et al (1993) Rearrangement and overexpression of the BCL-1/PRAD-1 gene in intermediate lymphocytic lymphomas and in t(11q13)-bearing leukemias. Blood 81:3063–3067

    PubMed  CAS  Google Scholar 

  • Sandlund JT, Santana V, Abromowitch M, et al (1994) Large cell non-Hodgkin lymphoma of childhood: clinical characteristics and outcome. Leukemia 8:30–34

    PubMed  CAS  Google Scholar 

  • Schnell R, Barth S, Diehl V, Engert A (1996) Hodgkin’s disease. Future treatment strategies: fact or fiction? Baillieres Clin Haematol 9:573–593

    Article  PubMed  CAS  Google Scholar 

  • Schnell R, Borchmann P, Staak JO, et al (2003) Clinical evaluation of ricin A-chain immunotoxins in patients with Hodgkin’s lymphoma. Ann Oncol 14:729–736

    Article  PubMed  CAS  Google Scholar 

  • Schweighoffer E, Vanes L, Mathiot A, Nakamura T, Tybulewicz VL (2003) Unexpected requirement for ZAP-70 in pre-B cell development and allelic exclusion. Immunity 18:523–533

    Article  PubMed  CAS  Google Scholar 

  • Shiota M, Mori S (1996) The clinicopathological features of anaplastic large cell lymphomas expressing p80NPM/ALK. Leuk Lymphoma 23:25–32

    PubMed  CAS  Google Scholar 

  • Shiota M, Fujimoto J, Takenaga M, et al (1994) Diagnosis of t(2;5)(p23;q35)-associated Ki-1 lymphoma with immunohistochemistry. Blood 84:3648–3652

    PubMed  CAS  Google Scholar 

  • Shiota M, Nakamura S, Ichinohasama R, et al (1995) Anaplastic large cell lymphomas expressing the novel chimeric protein p80NPM/ALK: a distinct clinicopathologic entity. Blood 86:1954–1960

    PubMed  CAS  Google Scholar 

  • Skinnider BF, Connors JM, Sutcliffe SB, Gascoyne RD (1999) Anaplastic large cell lymphoma: a clinicopathologic analysis. Hematol Oncol 17:137–148

    Article  PubMed  CAS  Google Scholar 

  • Soede RD, Wijnands YM, Kouteren-Cobzaru I, Roos E (1998) ZAP-70 tyrosine kinase is required for LFA-1-dependent T cell migration. J Cell Biol 142:1371–1379

    Article  PubMed  CAS  Google Scholar 

  • Stein H, Mason DY, Gerdes J, et al (1985) The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood 66:848–858

    PubMed  CAS  Google Scholar 

  • Stein H, Foss HD, Durkop H, et al (2000) CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood 96:3681–3695

    PubMed  CAS  Google Scholar 

  • Turturro F, Arnold MD, Frist AY, Pulford K (2002) Model of inhibition of the NPM-ALK kinase activity by herbimycin A. Clin Cancer Res 8:240–245

    PubMed  CAS  Google Scholar 

  • Wiestner A, Rosenwald A, Barry TS, et al (2003) ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 101:4944–4951

    Article  PubMed  CAS  Google Scholar 

  • Yang E, Korsmeyer SJ (1996) Molecular thanatopsis: a discourse on the BCL2 family and cell death. Blood 88:386–401

    PubMed  CAS  Google Scholar 

  • Zhang W, Sloan-Lancaster J, Kitchen J, Trible RP, Samelson LE (1998) LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92:83–92

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anagnostopoulos, I. (2007). Individualized Target Therapy of Malignant Lymphomas: An Outlook. In: Dietel, M. (eds) Targeted Therapies in Cancer. Recent Results in Cancer Research, vol 176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46091-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46091-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46090-9

  • Online ISBN: 978-3-540-46091-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics