Skip to main content

Health Effects of Haloforms in Drinking Water and Strategies for Their Control

  • Chapter
Haloforms and Related Compounds in Drinking Water

Part of the book series: The Handbook of Environmental Chemistry ((HEC5,volume 5 / 5G))

Abstract

The human population throughout history has been threatened by waterborne illnesses like typhoid fever and cholera. The disinfection of water supplies using chemical and physical intervention strategies has resulted in a dramatic decline in outbreaks of these epidemics. Water chlorination was and still is the most frequent used method of disinfection. The advances of water chlorination were unquestioned until the 1970s when Rook described the production of chloroform from humic acids and its subsequent identification in drinking water supplies. It was only the beginning and now additional classes of disinfection by-products (DBPs) such as alcohols, aldehydes, acids, etc., have been identified. The reaction between naturally occurring humic and fulvic acids in surface and ground water and disinfectants including chlorine, chloramine, chlorine dioxide and ozone, produces DBPs. However, the DBPs profile has to do with treatment methods. With the identification of these DBPs, the potential toxic effects from exposure to these organics is an interesting scientific area until today insufficient evidence exists regarding toxicity from animal testing for individual compounds and mixtures at concentrations found in water. United States Environmental Protection Agency (USEPA), taking into account the identification of carcinogenic compounds in drinking water, formed a regulation of these compounds, with initial efforts focusing on trihalomethanes (THMs). The goal of disinfection is to maximise protection from bacterial contamination, while minimising the formation of DBPs, by improving the quality of the raw water, using an alternative disinfectant, or removing organic contaminants and DBPs after they are formed during the treatment process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BCAN:

Bromochloroacetonitrile

BDCM:

Bromodichloromethane

BDOC:

Biodegradable organic carbon

BMX:

Brominated MX

CDBM:

Chlorodibromomethane

CEQ:

Council of environmental quality

DBAN:

Dibromoacetonitrile

DBPs:

Disinfection by-products

DCAN:

Dichloroacetonitrile

DOC:

Dissolved organic carbon

DOM:

Dissolved organic matter

DNA:

Deoxyribonucleic acid

DWEL:

Drinking water equivalent level

GAC:

Granular activated carbon

HAAs:

Haloacetic acids

HANs:

Haloacetonitriles

LD50 :

Lethal dose

MCL:

Maximum contaminant level

MX:

3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone

NAS:

National Academy of Sciences

NCI:

National Cancer Institute

NOM:

Natural organic matter

NRC:

National research council

RfD:

Reference dose

TCAN:

Trichloroacetonitrile

THMs:

Trihalomethanes

TOC:

Total organic carbon

TTHMs:

Total trihalomethanes

USEPA:

United States Environmental Protection Agency

UV:

Ultraviolet

WHO:

World Health Organization

References

  1. National Research Council (1987) Drinking water and health: disinfectants and disinfectant by-products, vol. 7. National Academy Press, Washington D.C.

    Google Scholar 

  2. Craun GF (1991) In: Hutzinger O (ed) The handbook of environmental chemistry. Springer, Berlin Heidelberg New York, p 1

    Google Scholar 

  3. Nieuwenhuijsen MJ, Toledano MB, Eaton NE, Fawell J, Elliott P (2000) Occup Environ Med 57: 73

    Article  CAS  Google Scholar 

  4. Ueno H, Tosiaki M, Sayato Y, Nakamuro K (1996) Chemosphere 33: 1425

    Article  CAS  Google Scholar 

  5. AWWA (1990) Water quality and treatment: a handbook of community water supplies, 4th edn. McGraw-Hill, USA, p 135

    Google Scholar 

  6. EPA (1996) Drinking water regulations and health advisories.

    Google Scholar 

  7. Golfinopoulos S (1998) Parameters of the formation of trihalomethanes in drinking water (volatile organic compounds in drinking water). PhD Dissertation, Department of Environmental Studies, University of the Aegean, Mytilene, Greece (in Greek)

    Google Scholar 

  8. Nieuwenhuijsen MJ, Toledano MB, Eaton NE, Fawell J, Elliot P (2000) Occup Environ Med 57: 73

    Article  CAS  Google Scholar 

  9. USEPA (1998) Federal register national primary drinking water regulations: disinfectants and disinfection byproducts. Final rule part IV, vol 63, p 69, 390

    Google Scholar 

  10. Glezer V, Harris B, Tal N, Iosefzon B, Lev O (1999) Water Res 33: 1938

    Article  CAS  Google Scholar 

  11. Palacios M, Pampillon JF, Rodriguez ME (2000) Water Res 34: 1002

    Article  CAS  Google Scholar 

  12. Valaoras G (1981) MSc, University of Washington

    Google Scholar 

  13. McGuire MJ (1989) J AWWA 81: 35

    CAS  Google Scholar 

  14. Fayad NM (1993) J AWWA 85: 46

    CAS  Google Scholar 

  15. Kimbrough DE, Suffet IH (2002) Water Res 36: 4902

    Article  CAS  Google Scholar 

  16. Johnson JD, Jensen JN (1986) J AWWA 78: 156

    CAS  Google Scholar 

  17. Nobukawa T, Sanukida S (2001) Water Res 35: 4293

    Article  CAS  Google Scholar 

  18. Bull RJ, Robinson M (1986) In: Water chlorination: chemistry, environmental impact and health effects, vol 5. Lewis, USA, p 221

    Google Scholar 

  19. Smith MK, George EL, Zenick H, Manson JM, Stober JA (1987) Toxicology 46: 83

    Article  CAS  Google Scholar 

  20. Merrick BA, Smallwood CL, Meier JR, McKean DL, Kaylor WH, Condie LW (1987) Toxicol Appl Pharmacol 91: 46

    Article  CAS  Google Scholar 

  21. Moudgal CJ, Lipscomb JC, Bruce RM (2000) Toxicology 147: 109

    Article  CAS  Google Scholar 

  22. Zhuo C, Chengyong Y, Junhe L, Huixian Z, Jinqi Z (2001) Chemosphere 45: 379

    Article  CAS  Google Scholar 

  23. Richardson SD (1999) Anal Chem 71: 181R

    Article  CAS  Google Scholar 

  24. Hashimoto S, Azuma T, Otsuki A (1998) Environ Toxicol Chem 17: 798

    Article  CAS  Google Scholar 

  25. Becher G, Ovrum NM, Christman RF (1992) Sci Total Environ 117 /118: 509

    Article  Google Scholar 

  26. Lu J, Zou H, Yu Z, Xu X, Zhang J (2002) Chemosphere 48: 29

    Article  CAS  Google Scholar 

  27. Pontius FW (1998) J AWWA 90: 176

    Google Scholar 

  28. Nieminski EC, Chaudhuri S, Lamoreaux T (1993) J AWWA 85: 98

    Google Scholar 

  29. Moser RH, Lee RG (1983) In: AWWA (eds) seminar proceedings strategies control trihalomethanes. Denver, p 133

    Google Scholar 

  30. Moudgal CJ, Lipscomb JC, Bruce RM (2000) Toxicology 147: 109

    Article  CAS  Google Scholar 

  31. EEC (1998) Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Official Journal of the European Communities, L 330/32, 5.12. 98

    Google Scholar 

  32. Nissinen TK, Miettinen IT, Martikainen PJ, Vartiainen T (2002) Chemosphere 48: 9

    Article  CAS  Google Scholar 

  33. Williams DT, Lebel GL, Benoit FM (1997) Chemosphere 34: 299

    Article  CAS  Google Scholar 

  34. Vogt C, Regli S (1981) J AWWA 73: 33

    CAS  Google Scholar 

  35. Clark RM, Adams JQ, Lykins BW (1994) J Environ Eng 120: 759

    Article  CAS  Google Scholar 

  36. Krasner SW, Amy G (1995) J AWWA 87: 93

    CAS  Google Scholar 

  37. Crozes G, White P, Marshall M (1995) J AWWA 87: 78

    CAS  Google Scholar 

  38. Pizzi NG, Rodgers M (1997) J AWWA 89: 78

    CAS  Google Scholar 

  39. Black BD, Harrington GW, Singer PC (1996) Reducing cancer risks by improving organic carbon removal. J AWWA 88: 40

    CAS  Google Scholar 

  40. Summers RS, Benz MA, Shukairy HM, Cummings L (1993) J AWWA 85: 88

    CAS  Google Scholar 

  41. Jacangelo JG, DeMarco J, Owen DM, Randtke SJ (1995) J AWWA 87: 64

    CAS  Google Scholar 

  42. Owen DM, Amy GL, Chowdhury ZK, Paode R, McCoy G, Viscosil K (1995) J AWWA 87: 46

    CAS  Google Scholar 

  43. Dowbiggin WB, Thompson JC (1990) In: AWWA (eds) Proceedings of the Conference on Water Quality Technology. Cincinatti Ohio, p 1721

    Google Scholar 

  44. Batterman S, Zhang L, Wang S (2000) Water Res 34: 1652

    Article  CAS  Google Scholar 

  45. Chang C-N, Ma Y-S, Zing F-F (2002) Chemosphere 46: 21

    Article  CAS  Google Scholar 

  46. Najm IN, Krasner SW (1995) J AWWA 87: 106

    CAS  Google Scholar 

  47. Volk C, Roche P, Joret J-C, Paillard H (1997) Water Res 31: 650

    Article  CAS  Google Scholar 

  48. Cipparone LA, Diehl AC, Speitel GE Jr (1997) J AWWA 89: 84

    CAS  Google Scholar 

  49. Tan L, Amy GL (1991) J AWWA 84: 74

    Google Scholar 

  50. Katz A, Narkis M (2001) Water Res 35: 1

    Article  Google Scholar 

  51. Dietrich AM, Orr MP, Gallagher DL, Hoehn RC (1992) J AWWA 84: 82

    CAS  Google Scholar 

  52. Norman TS, Harms LL, Looyenga RW (1980) J AWWA 72: 176

    CAS  Google Scholar 

  53. Wolfe RL (1990) Environ Sci Technol 24: 768

    Article  CAS  Google Scholar 

  54. Cowman GA, Singer PC (1996) Environ Sci Technol 30: 16

    Article  CAS  Google Scholar 

  55. Topudurti KV, Haas CN (1991) J AWWA 83: 62

    CAS  Google Scholar 

  56. Bergmann H, Iourtchouk T, Schops K, Bouzek K (2002) Chem Eng J 85: 111

    Article  CAS  Google Scholar 

  57. Parrotta MJ, Bekdash F (1998) J AWWA 90: 71

    CAS  Google Scholar 

  58. Craik AS, Finch GR, Bolton JR, Belosevic M (2000) Water Res 34: 4325

    Article  CAS  Google Scholar 

  59. Richardson SD, Thruston AD, Collette TW, Patterson KS, Lykins BW, Ireland JC (1996) Environ Sci Technol 30: 3327

    Article  CAS  Google Scholar 

  60. Singer PC (1994) J Environ Eng 120: 727

    Article  CAS  Google Scholar 

  61. Wist J, Sanabria J, Dierolf C, Torres W, Pulgarin C (2002) J Photochem Photobiol A Chem 147: 241

    Article  CAS  Google Scholar 

  62. Summers RS, Haist B, Koehler J, Ritz J, Zimmer G, Sontheimer H (1989) J AWWA 81: 66

    CAS  Google Scholar 

  63. Kim PH-S, Symons JM (1991) J AWWA 83: 61

    CAS  Google Scholar 

  64. Karanfil T, Schlautman MA, Kilduff JE, Weber WJ (1996) Environ Sci Technol 30: 2195

    Article  CAS  Google Scholar 

  65. Ivancev-Tumbas I, Dalmacija B (2001) Water Res 35: 3950

    Article  CAS  Google Scholar 

  66. Blum DJW, Suffet IH, Duguet JP (1994) Water Res 28: 687

    Article  CAS  Google Scholar 

  67. Speth TF, Miltner RJ (1998) J AWWA 90: 171

    CAS  Google Scholar 

  68. Glaze WH, Andelman JB, Bull RJ, Conolly RB, Hertz CD, Hood RD, Pegram RA (1993) J AWWA 85: 53

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Golfinopoulos, S.K. (2003). Health Effects of Haloforms in Drinking Water and Strategies for Their Control. In: Nikolaou, A.D. (eds) Haloforms and Related Compounds in Drinking Water. The Handbook of Environmental Chemistry, vol 5 / 5G. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44997-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44997-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53618-2

  • Online ISBN: 978-3-540-44997-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics