Skip to main content

Photonic and Microwave Wireless Systems

  • Chapter
Book cover Integrated Optics

Part of the book series: Advanced Texts in Physics ((ADTP))

  • 1167 Accesses

Abstract

Beginning in about 1990, a new trend became significant in the field of integrated optics; it is the merging of photonic devices and systems with those of RF (radio frequency) and microwaves. Our telecom/datacom systems mostly now have been converted to lightwave systems, employing optical fibers and integrated optic devices. These systems have vastly increased the capacity and effectiveness of worldwide communications networks, as discussed in Chap. 20. However, they leave still a missing link to the end user. We are a mobile society and it isn’t always convenient to be connected to the network by a glass fiber or a metal wire. This has led to the development of “wireless” radio communications networks based on the transmission of RF or microwave signals through the air. However, it is not practical for everyone to carry a high-power radio transceiver. By combining short-distance, low-power wireless systems with lightwave systems employing optical fibers and OICs for long distance transmission, we have made it possible, for example, for a person (or computer) traveling in a vehicle say in Los Angeles to communicate with one in a vehicle in major cities in Europe or Asia. The combination of fiber-optics for long-distance point-to-point communications and microwaves for short-range wireless communications provides high data rates, high levels of security and reliable mobile communications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Politko, H. Ogawa: The merging of photonic and microwave technologies. Microwave Journal, March 1992, pp. 75–80

    Google Scholar 

  2. Y. Baeyens, A. Leven, W. Bronner, V. Hurm, R. Reuter, K. Kohler, J. Resenweig, M. Schlectweg: Millimeter-wave long-wavelength integrated optical receivers grown on GaAs. IEEE Photonics Tech. Lett. 11, 868 (1999)

    Article  ADS  Google Scholar 

  3. A. Rosen, P. Stabile, W. Janton, A. Gombar, P. Basile, J. Delmaster, R. Hurwitz: IEEE Trans. MTT-37, 1255 (1989)

    Google Scholar 

  4. A. Vaucher, W. Streiffer, C.H. Lee: IEEE Trans. MTT-31, 209 (1983)

    Google Scholar 

  5. P.R. Herczfeld, A.S. Durousch, A. Rosen, A.K. Sharma, V.M. Contarino: IEEE Trans. MTT-34, 1371 (1986)

    Google Scholar 

  6. N.J. Gomes, A.J. Seeds: Electron. Lett. 23, 1084 (1987)

    Article  Google Scholar 

  7. R.G. Hunsperger, M.A. Mentzer: SPIE Proc. 993, 204 (1988)

    Article  Google Scholar 

  8. R.G. Hunsperger: Proc. SBMO Int’l Microwave Symp., Sao Paulo, Brazil (1989), IEEE Cat. No. 89TH0260–0, p. 743

    Google Scholar 

  9. R.W. Ridgway, D.T. Davis: IEEE J. Lightwave Tech. 4, 1514 (1986)

    Article  ADS  Google Scholar 

  10. See e.g., IASTED/IEEE Int. Conf. On Wireless and Optical Communications (WC2002), Banff, Canada, July 17–19, 2002

    Google Scholar 

  11. See e.g., P.R. Herczfeld: Applications of photonics to microwave devices and systems, in Photonic Devices and Systems R.G. Hunsperger, ed. (Marcel Dekker, New York, 1994) Chap. 8

    Google Scholar 

  12. W.D. Jemison, P.R. Herczfeld, W. Rosen, A. Viera, A. Rosen, A. Paotella: Hybrid fiberoptic-millimeter-wave links IEEE Microwave Magazine 1, 44 (2000)

    Article  Google Scholar 

  13. T. Kuri, K. Kitayama, A. Stohr, Y. Ogawa: Fiber-optic millimeter-wave downlink system using 60 GHz-band external modulation. IEEE J. Lightwave Tech. 17, 799 (1999)

    Article  ADS  Google Scholar 

  14. T. Kuri, K. Kitayama, Y. Takahashi: 60-GHz-band full-duplex radio-on-fiber system using two-RF-port electroabsorption transceiver. IEEE Photonics Tech. Lett. 12, 419 (2000)

    Article  ADS  Google Scholar 

  15. T. Olson: An RF and microwave fiber-optic design guide. Microwave Journal, August 1996, pp. 54–78

    Google Scholar 

  16. A. Umbach, T. Engel, H.-G. Bach, S. van Waasen, E. Droge, A. Strittmatter, W. Ebert, W. Passenberg, R. Steingruber, W. Schlaak, G.G. Mekonnen, G. Unterborsch, D. Bim-berg: Technology of InP-based 1.55-µm ultrafast OEMMICs: 40-Gbit/s broad-band and 38/60-GHz narrow-band photoreceivers. IEEE J. Quantum Electron. 35, 1024 (1999)

    Article  ADS  Google Scholar 

  17. A. Stohr, K. Kitayama, T. Kuri: Fiber-length extension in an optical 60-GHz transmission system using an EA-modulator with negative chirp IEEE Photonics Tech. Lett. 11, 739 (1999)

    Article  ADS  Google Scholar 

  18. K. Kitayama: Fading-free transport of 60 GHz-optical DSB signal in non dispersion shifted fiber using chirped fiber grating. Proc. Int. Topical Meeting Microwave Photonics (MWP’98), Princeton, NJ, Oct. 1998, pp. 223–226

    Google Scholar 

  19. G. Smith, D. Novak: Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects. IEEE Photonics Tech. Lett., 10, 141 (1998)

    Article  ADS  Google Scholar 

  20. T. Kuri, K. Kitayama, Y. Takahashi: 60-GHz-band full-duplex radio-on-fiber system using two-RF-port electroabsorption transceiver. IEEE Photonics Tech. Lett. 12, 419 (2000)

    Article  ADS  Google Scholar 

  21. R.A. Griffin, H.M. Salgado, P.M. Lane, J.J. O’Reilly: System capacity for millimeter-wave radio-over-fiber distribution employing an optically supported PLL. IEEE J. Lightwave Tech. 17, 2480 (1999)

    Article  ADS  Google Scholar 

  22. See e.g., C.S. Ih: All-optical communications and networks, in Photonic Devices and Systems R.G. Hunsperger, ed. (Marcel Dekker, New York, 1994) Chap. 10

    Google Scholar 

  23. C.S. Ih, R.G. Hunsperger, J.J. Kramer, R. Tian, X. Wang, K. Kissa, J. Butler: A novel modulation system for optical communication. Proc. SPIE 876, 30 (1988)

    Article  Google Scholar 

  24. C.S. Ih, R.G. Hunsperger, X.L. Wang, J.J. Kramer, K. Kissa, R.S. Tian, J. Butler, X.C. Du, W.Y. Gu, D. Kopchik: Double beam modulation technologies for free-space laser communications, Proc. Free-Space Laser Communication Technologies II, (SPIE OE-LASE’90), Los Angeles, CA, (1990) pp. 1218–53

    Google Scholar 

  25. T. Chau, N. Kaneda, T. Jung, A. Rollinger, S. Mathai, Y. Qian, T. Itoh, M.C. Wu, W.P. Shillue, J.M. Payne: Generation of millimeter waves by photomixing at 1.55 p.m using InGaAs- InAlAs-InP velocity-matched distributed photodetectors IEEE Photonics Tech. Lett. 12, 1055 (2000)

    Article  ADS  Google Scholar 

  26. Y. Li, A.J.C. Viera, P. Herczfeld, A. Rosen, W. Janton: Optical generation of rapidly tunable millimeter wave source. Proc. International Topical Meeting on Microwave Photonics (MWP 2000), 11–13 Sept. 2000, pp. 259–262

    Google Scholar 

  27. X. Wang, W. Mao, M. Al-Mumin, S.A. Pappert, J. Hong, G. Li: Optical generation of microwave/millimeter wave signals using two-section gain-coupled DFB lasers. IEEE Photonics Tech. Lett. 11, 1292 (1999)

    Article  ADS  Google Scholar 

  28. H. Wenzel, U. Bandelow, H. Wunche, J. Rehberg: Mechanisms of fast self pulsations in two-section DFB lasers. IEEE J. Quantum Electron. 32, 69 (1996)

    Article  ADS  Google Scholar 

  29. A. Hsu, S.L. Chuang, T. Tanbun-Ek: Tunable dual-mode operation in a chirped grating distributed-feedback laser. IEEE Photonics Tech. Lett. 12, 963 (2000)

    Article  ADS  Google Scholar 

  30. G. Grosskopf, D. Rohde, R. Eggemann, S. Bauer, C. Bornholdt, M. Mohrle, B. Sartorius: Optical millimeter-wave generation and wireless data transmission using a dual-mode laser. IEEE Photonics Tech. Lett. 12, 1692 (2000)

    Article  ADS  Google Scholar 

  31. L.A. Johansson, A.J. Seeds: Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop. IEEE Photonics Tech. Lett. 12, 690 (2000)

    Article  ADS  Google Scholar 

  32. K. Kissa, R.G. Hunsperger, C.S. Ih, X. Wang: Generation of microwave subcarriers for optical communication using standing-wave-surface-acoustic-wave waveguide modulator. Proc. Optical Society of America Annual Meeting, Oct. 30-Nov. 4, 1988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hunsperger, R.G. (2002). Photonic and Microwave Wireless Systems. In: Integrated Optics. Advanced Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38843-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38843-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12096-5

  • Online ISBN: 978-3-540-38843-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics