Skip to main content

Regulation of Factor VIII Life-Cycle by Receptors from LDL Receptor Superfamily

  • Conference paper
36th Hemophilia Symposium Hamburg 2005

Summary

The present review discusses the current concept of receptor-mediated clearance of coagulation factor VIII (FVIII) from the circulation in vivo, which is one of the mechanisms regulating FVIII level in plasma. Several lines of experimental evidence suggest that two receptors from the LDL receptor family, low-density lipoprotein receptor-related protein (LRP) and LDL receptor, cooperate in this process. Administration of receptor-associated protein, a classical antagonist of these receptors, leads to prolongation of FVIII half-life in mice.The elevation of FVIII level and prolongation of its mean residence time, recorded in conditional LRP-deficient mice, directly confirm the physiological role of LRP in mediating clearance of FVIII. Mice with combined LRP and low-density lipoprotein receptor (LDLR) deficiency show a further increase of FVIII level and more impressive, ~5-fold, prolongation of FVIII residence time in the circulation. Receptor-mediated clearance of FVIII is facilitated by heparan sulfate proteoglycans of extracellular matrix, which provide the initial binding of FVIII to the cell surface.We discuss the mapping of the major high-affinity LRP-binding sites to the regions 484-509 and 1811-1818 of A2 and A3 domains of FVIII, respectively; LDLR-binding sites are yet to be identified. Mutagenesis of these sites may result in disruption/reduction of FVIII/receptor interaction and consequently lead to clinically-significant prolongation of FVIII lifetime in the circulation.We demonstrate the feasibility of this approach by the results of Ala-scanning mutagenesis of the A2 LRP-binding site. Generation of a novel recombinant FVIII with prolonged lifetime would meet the demands, improve the efficacy and reduce the cost of FVIII replacement therapy of Hemophilia A.

Coagulation factor VIII (FVIII) [1] serves its function in the intrinsic coagulation pathway as a cofactor for the serine protease FIXa in activation of FX to FXa [1, 2]. Genetic or functional deficiency in FVIII phenotypically results in the bleeding disorder Hemophilia A, as the intrinsic pathway is responsible for normal spatial propagation of the clotting process from the surface of tissue factor-bearing cells.

The FVIII molecule (~300 kDa, 2332 amino acid residues) consists of three homologous A domains, two homologous C domains and the unique B domain (A1- A2-B-A3-C1-C2). In plasma, FVIII circulates as a metal ion-linked heterodimer consisting of the heavy chain (HCh),which is comprised of the A1 (1-336),A2 (373-719) and B domains (741-1648), and the light chain (LCh), which includes the A3 (1690- 2019), C1 (2020-2172) and C2 (2173-2332) domains.

In the circulation, FVIII is tightly non-covalently associated with its carrier protein von Willebrand factor (Kd ~ 0.4 nM),which prevents premature assembly of the Xase complex and protects FVIII from proteolytic inactivation [2, 3]. Limited proteolysis by physiological activators, thrombin or FXa, at Arg372 and Arg740 within FVIII HCh and at Arg1689 within LCh converts FVIII into its active form. In heterotrimeric activated FVIII, the A1 and A3 domains retain the metal ion bridge, and the relatively stable A1/A3-C1-C2 dimer is weakly associated with the A2 subunit through electrostatic interactions [1, 2].

The cofactor activity of FVIIIa in the assembled intrinsic Xase complex is provided by three essential interactions of FVIIIa: with the phospholipid membrane, with the enzyme FIXa and the substrate FX. The high-affinity interaction (Kd ~ 15 nM) between FVIIIa and FIXa is provided by residues 1811-1818 of the A3 domain of LCh [4]. Binding of the A2 domain to FIXa, although with low-affinity (Kd~300 nM), modulates the active site of FIXa and in this way amplifies the enzymatic activity of FIXa by 100-fold [5]. Specifically, the A2 residues 484-509 were shown to be involved in this interaction [6]. The FX-binding site was localized to A1 residues 349-372 of FVIII.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fay PJ. Regulation of Factor VIIIa in the Intrinsic Factor Xase. Thromb Haemost 1999; 82: 193–200.

    PubMed  CAS  Google Scholar 

  2. Saenko EL, Ananyeva NM, Tuddenham EG, Kemball-Cook G. FactorVIII-novel insights into form and function. Br J Haematol 2002; 119: 323–31.

    Article  PubMed  Google Scholar 

  3. Saenko EL, Scandella D. The acidic region of the light chain and the C2 domain together form a high affinity binding site for von Willebrand factor. J Biol Chem 1997; 272: 18007–14.

    Article  PubMed  CAS  Google Scholar 

  4. Lenting PJ, van de Loo JW, Donath MJ, van Mourik JA, Mertens K. The sequence Glu 1811-Lys 1818 of human blood coagulation factor VIII comprises a binding site for activated factor IX. J Biol Chem 1996; 271: 1935–40.

    Article  PubMed  CAS  Google Scholar 

  5. Fay PJ, Koshibu K. The A2_subunit of factor VIIIa modulates the active site of factor IXa. J Biol Chem 1998; 273: 19049–54.

    Article  PubMed  CAS  Google Scholar 

  6. Fay PJ, Scandella D.Human inhibitor antibodies specific for the factor VIII A2_domain disrupt the interaction between the subunit and factor IXa. J Biol Chem 1999; 274: 29826–30.

    Article  PubMed  CAS  Google Scholar 

  7. Saenko EL, Yakhyaev AV, Mikhailenko I, Strickland DK, Sarafanov AG. Role of the low density lipoprotein-related protein receptor in mediation of factor VIII catabolism. J Biol Chem 1999; 274: 37685–92.

    Article  PubMed  CAS  Google Scholar 

  8. Lenting P, Neels JG, van den Berg BM, Clijsters PFM, Meijerman DWE, Pannekoek H, van Mourik JA, Mertens K, Zonneveld A-J. The light chain of factor VIII comprises a binding site for low density lipoprotein receptor-related protein. J Biol Chem 1999; 274: 23734–9.

    Article  PubMed  CAS  Google Scholar 

  9. Schwarz HP, Lenting PJ, Binder B, Mihaly J, Denis C, Dorner F, Turecek PL. Involvement of low-density lipoprotein receptor-related protein (LRP) in the clearance of factor VIII in von Willebrand factor-deficient mice. Blood 2000; 95: 1703–8.

    PubMed  CAS  Google Scholar 

  10. Turecek PL, Lenting PJ, van Mourik JA, Binder B, Mihaly J, Denis C, Wagner D, Dorner F, Schwarz HP. Low density lipoprotein receptor-related protein (LRP) mediates the clearance of factor VIII in vWF-deficient mice. Blood 1999; 94: 647a.

    Google Scholar 

  11. Turecek PL, Schwarz HP, Binder BR. In vivo inhibition of low density lipoprotein receptorrelated protein improves survival of factor VIII in the absence of von Willebrand factor. Blood 2000; 95: 3637–8.

    PubMed  CAS  Google Scholar 

  12. Neels JG, Horn IR, van den Berg BMM, Pannekoek H, van Zonneveld A-J. Ligand-receptor interactions of the low density lipoprotein receptor-related protein, a multi-ligand endocytic receptor. Fibrinolysis and Proteolysis 1998; 12: 219–40.

    Article  CAS  Google Scholar 

  13. Sarafanov AG, Ananyeva NM, Shima M, Saenko EL. Cell surface heparan sulfate proteoglycans participate in factor VIII catabolism mediated by low density lipoprotein receptorrelated protein. J Biol Chem 2001; 276: 11970–9.

    Article  PubMed  CAS  Google Scholar 

  14. Bovenschen N, Herz J, Grimbergen JM, Lenting PJ, Havekes LM, Mertens K, van Vlijmen BJ. Elevated plasma factor VIII in a mouse model of low-density lipoprotein receptor-related protein deficiency. Blood 2003; 101: 3933–9.

    Article  PubMed  CAS  Google Scholar 

  15. Hollestelle MJ, Geertzen HG, Straatsburg IH, van Gulik TM, van Mourik JA. Factor VIII expression in liver disease. Thromb Haemost 2004; 91: 267–75.

    PubMed  CAS  Google Scholar 

  16. Bovenschen N, Mertens K, Hu L, Havekes LM, van Vlijmen BJ. LDL receptor cooperates with LDL receptor-related protein in regulating plasma levels of coagulation factor VIII in vivo. Blood 2005; 106: 906–12.

    Article  PubMed  CAS  Google Scholar 

  17. Kouiavskaia DV, Ruiz JF, Strickand DK, Saenko EL. Very low density lipoprotein receptor interacts with coagulation factor VIII. Blood 2003; 102: 88a.

    Google Scholar 

  18. Mertens K, Bovenschen N, Voorberg J, Meijer AB. The endocytic receptors megalin and low-density lipoprotein receptor-related protein share binding to coagulation factor VIII. Blood 2003; 102: 89a.

    Google Scholar 

  19. Makogonenko E, Sarafanov A, Pechik I, Andersen O, Ananyeva N, Radtke K-P, Strickland D, Saenko E. The A2_domain of coagulation factor VIII shares residues critical for interaction with three members of LDL receptor superfamily-LRP, VLDL and megalin receptors. J Thromb Haemost 2005; 3(Suppl 1): P0646.

    Google Scholar 

  20. Bovenschen N, van Dijk KW, Havekes LM, Mertens K, van Vlijmen BJ. Clearance of coagulation factor VIII in very low-density lipoprotein receptor knockout mice. Br J Haematol 2004; 126: 722–5.

    Article  PubMed  CAS  Google Scholar 

  21. Bovenschen N, Boertjes RC, van Stempvoort G, Voorberg J, Lenting PJ, Meijer AB, Mertens K. Low density lipoprotein receptor-related protein and factor IXa share structural requirements for binding to the A3 domain of coagulation factor VIII. J Biol Chem 2003; 278: 9370–7.

    Article  PubMed  CAS  Google Scholar 

  22. Stoilova-McPhie S, Villoutreix BO, Mertens K, Kemball-Cook G, Holzenburg A. Threedimensional structure of membrane-bound coagulation factor VIII: modeling of the factor VIII heterodimer within a three-dimensional density map derived by electron crystallography. Blood 2002; 99: 1215–23.

    Article  PubMed  CAS  Google Scholar 

  23. Sarafanov A.G., Makogonenko E, Pechik I.V., Radtke K-P, Khrenov A.V., Ananyeva N.M., Strickland D.K., Saenko E.L. Identification of coagulation factor VIII A2 domain residues forming the binding epitope for low-density lipoprotein receptor-related protein. Biochemistry 2006; 45: 1829–1840.

    Article  PubMed  CAS  Google Scholar 

  24. Lethagen S, Berntorp E, Nilsson IM. Pharmacokinetics and hemostatic effect of different factor VIII/von Willebrand factor concentrates in von Willebrand’s disease type III. Ann Hematol 1992; 65: 253–9.

    Article  PubMed  CAS  Google Scholar 

  25. Over J, Sixma JJ, Bruine MH, Trieschnigg MC, Vlooswijk RA, Bieser-Visser NH, Bouma BN. Survival of 125iodine-labeled factor VIII in normals and patients with classic hemophilia. Observations on the heterogeneity of human factor VIII. J Clin Invest 1978; 62: 223–34.

    CAS  Google Scholar 

  26. Fijnvandraat K, Berntorp E, Ten Cate JW, Johnsson H, Peters M, Savidge G, Tengborn L, Spira J, Stahl C. Recombinant, B-domain deleted factor VIII (r-VIII SQ): pharmacokinetics and initial safety aspects in hemophilia A patients. Thromb Haemost 1997; 77: 298–302.

    PubMed  CAS  Google Scholar 

  27. Fijnvandraat K, Peters M, Ten Cate JW. Inter-individual variation in half-life of infused recombinant factor VIII is related to pre-infusion von Willebrand factor antigen levels. Br J Haematology 1995; 91: 474–6.

    CAS  Google Scholar 

  28. Van DK, van der Bom JG, Lenting PJ, de Groot PG, Mauser-Bunschoten EP, Roosendaal G, Grobbee DE, van den Berg HM. Factor VIII half-life and clinical phenotype of severe hemophilia A. Haematologica 2005; 90: 494–8.

    Google Scholar 

  29. Vlot AJ, Mauser-Bunschoten EP, Zarkova AG, Haan E, Kruitwagen CL, Sixma JJ, van den Berg HM. The half-life of infused factor VIII is shorter in hemophilic patients with blood group O than in those with blood group A. Thromb Haemost 2000; 83: 65–9.

    PubMed  CAS  Google Scholar 

  30. Bjorkman S, Berntorp E. Pharmacokinetics of coagulation factors: clinical relevance for patients with haemophilia. Clin Pharmacokinet 2001; 40: 815–32.

    Article  PubMed  CAS  Google Scholar 

  31. Bovenschen N, van Stempvoort G, Voorberg J, Mertens K, Meijer AB. Cleavage of factor VIII heavy chain by thrombin increases the affinity for low-density lipoprotein receptorrelated protein (LRP). J Thromb Haemost 2003; Suppl July: OC095.

    Google Scholar 

  32. Neels JG, Bovenschen N, Zonneveld A-J, Lenting P. Interaction between factor VIII and LDL receptor-related protein. Trends Cardiovasc Med 2000; 10: 8–14.

    Article  PubMed  CAS  Google Scholar 

  33. Herz J, Strickland DK. LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 2001; 108: 779–84.

    Article  PubMed  CAS  Google Scholar 

  34. Neels JG, Berg BMM, Looken A, Olivecrona G, Pannekoek H, Zonneveld A-J. The second and fourth cluster of class A cysteine-rich repeats of the low density lipoprotein receptorrelated protein share ligand-binding properties. J Biol Chem 1999; 274: 31305–11.

    Article  PubMed  CAS  Google Scholar 

  35. Sarafanov A, Makogonenko E, Andersen O, Khrenov A, Mikhailenko I, Strickland D, Saenko E. Identification of regions in low-density lipoprotein receptor-related protein responsible for interaction with A2 and A1/A3-C1-C2 portions of coagulation factor VIII. J Thromb Haemost 2005; 3(Suppl 1): OR248.

    Google Scholar 

  36. Morange PE, Tregouet DA, Frere C, Saut N, Pellegrina L, Alessi MC, Visvikis S, Tiret L, Juhan-Vague I. Biological and genetic factors influencing plasma factor VIII levels in a healthy family population: results from the Stanislas cohort.Br J Haematol 2005; 128: 91–9.

    Article  PubMed  CAS  Google Scholar 

  37. Cunningham N, Laffan MA, Manning RA, O’Donnell JS. Low-density lipoprotein receptorrelated protein polymorphisms in patients with elevated factor VIII coagulant activity and venous thrombosis. Blood Coagul Fibrinolysis 2005; 16: 465–8.

    Article  PubMed  CAS  Google Scholar 

  38. Ananyeva N, Khrenov A, Darr F, Summers R, Sarafanov A, Saenko E. Treating haemophilia A with recombinant blood factors: a comparison. Expert Opin Pharmacother 2004; 5: 1061–70.

    Article  PubMed  CAS  Google Scholar 

  39. Ananyeva NM, Lacroix-Desmazes S, Hauser CA, Shima M, Ovanesov MV, Khrenov AV, Saenko EL. Inhibitors in hemophilia A: mechanisms of inhibition, management and perspectives. Blood Coagul Fibrinolysis 2004; 15: 109–24.

    Article  PubMed  CAS  Google Scholar 

  40. Parker ET, Healey JF, Barrow RT, Craddock HN, Lollar P. Reduction of the inhibitory antibody response to human factor VIII in hemophilia A mice by mutagenesis of the A2 domain B-cell epitope. Blood 2004; 104: 704–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Verlag Berlin Heidelberg

About this paper

Cite this paper

Saenko, E.L. (2007). Regulation of Factor VIII Life-Cycle by Receptors from LDL Receptor Superfamily. In: Scharrer, I., Schramm, W. (eds) 36th Hemophilia Symposium Hamburg 2005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36715-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36715-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36714-7

  • Online ISBN: 978-3-540-36715-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics