Skip to main content

Collective Tree Exploration

  • Conference paper
LATIN 2004: Theoretical Informatics (LATIN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2976))

Included in the following conference series:

Abstract

An n-node tree has to be explored by k mobile agents (robots), starting in its root. Every edge of the tree must be traversed by at least one robot, and exploration must be completed as fast as possible. Even when the tree is known in advance, scheduling optimal collective exploration turns out to be NP-hard. We investigate the problem of distributed collective exploration of unknown trees. Not surprisingly, communication between robots influences the time of exploration. Our main communication scenario is the following: robots can communicate by writing at the currently visited node previously acquired information, and reading information available at this node. We construct an exploration algorithm whose running time for any tree is only O(k/log k) larger than optimal exploration time with full knowledge of the tree. (We say that the algorithm has overheadO(k/log k)). On the other hand we show that, in order to get overhead sublinear in the number of robots, some communication is necessary. Indeed, we prove that if robots cannot communicate at all, then every distributed exploration algorithm works in time Ω (k) larger than optimal exploration time with full knowledge, for some trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM Journal on Computing 29, 1164–1188 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arkin, E., Bender, M., Fekete, S., Mitchell, J., Skutella, M.: The freeze-tag problem: How to wake up a swarm of robots. In: 13th ACM-SIAM Symp. on Disc. Alg. (SODA 2002), pp. 568–577 (2002)

    Google Scholar 

  3. Arkin, E., Bender, M., Ge, D., He, S., Mitchell, J.: Improved approximation algorithms for the freeze-tag problem. In: 15th ACM Symp. on Par. in Alg. and Arch. (SPAA 2003), pp. 295–303 (2003)

    Google Scholar 

  4. Averbakh, I., Berman, O.: A heuristic with worst-case analysis for minimax routing of two traveling salesmen on a tree. Discr. Appl. Mathematics 68, 17–32 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Averbakh, I., Berman, O.: (p−1)/(p+1)-approximate algorithms for p-traveling salesmen problems on a tree with minmax objective. Discr. Appl. Mathematics 75, 201–216 (1997)

    Google Scholar 

  6. Awerbuch, B., Betke, M., Rivest, R., Singh, M.: Piecemeal graph learning by a mobile robot. In: 8th Conf. on Comput. Learning Theory (COLT 1995), pp. 321–328 (1995)

    Google Scholar 

  7. Bar-Eli, E., Berman, P., Fiat, A., Yan, R.: On-line navigation in a room. Journal of Algorithms 17, 319–341 (1994)

    Article  MathSciNet  Google Scholar 

  8. Bender, M.A., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: Exploring and mapping directed graphs. In: 30th Ann. Symp. on Theory of Comp. (STOC 1998), pp. 269–278 (1998)

    Google Scholar 

  9. Bender, M.A., Slonim, D.: The power of team exploration: Two robots can learn unlabeled directed graphs. In: 35th Ann. Symp. on Foundations of Comp. Science (FOCS 1996), pp. 75–85 (1996)

    Google Scholar 

  10. Berman, P., Blum, A., Fiat, A., Karloff, H., Rosen, A., Saks, M.: Randomized robot navigation algorithms. In: 7th ACM-SIAM Symp. on Discrete Algorithms (SODA 1996), pp. 74–84 (1996)

    Google Scholar 

  11. Blum, A., Raghavan, P., Schieber, B.: Navigating in unfamiliar geometric terrain. SIAM Journal on Computing 26, 110–137 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Betke, M., Rivest, R., Singh, M.: Piecemeal learning of an unknown environment. Machine Learning 18, 231–254 (1995)

    Google Scholar 

  13. Deng, X., Kameda, T., Papadimitriou, C.H.: How to learn an unknown environment I: the rectilinear case. Journal of the ACM 45, 215–245 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. of Graph Th. 32, 265–297 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 374–386. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. In: 13th Ann. ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), pp. 588–597 (2002)

    Google Scholar 

  17. Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph exploration. In: 12th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA 2001), pp. 807–814 (2001)

    Google Scholar 

  18. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing problems. SIAM J. on Computing 7, 178–193 (1978)

    Article  MathSciNet  Google Scholar 

  19. Garey, M., Johnson, D.: Computers and Intractability. W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  20. Lopez-Ortiz, A., Schuierer, S.: Online Parallel Heuristics and Robot Searching under the Competitive Framework. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 260–269. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. of Algorithms 33, 281–295 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. Theoretical Computer Science 84, 127–150 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rao, N.S.V., Hareti, S., Shi, W., Iyengar, S.S.: Robot navigation in unknown terrains: Introductory survey of non-heuristic algorithms. Tech. Rep. ORNL/TM-12410, Oak Ridge National Laboratory (July 1993)

    Google Scholar 

  24. Schuierer, S.: On-line searching in geometric trees. In: Noltemeier, H., Christensen, H.I. (eds.) Dagstuhl Seminar 1998. LNCS (LNAI), vol. 1724, pp. 220–239. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A. (2004). Collective Tree Exploration. In: Farach-Colton, M. (eds) LATIN 2004: Theoretical Informatics. LATIN 2004. Lecture Notes in Computer Science, vol 2976. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24698-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24698-5_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21258-4

  • Online ISBN: 978-3-540-24698-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics