Skip to main content

AMRFLEX3D — Flow Simulation Using a Three-Dimensional Self-Adaptive, Structured Multi-Block Grid System

  • Chapter
Book cover Flow Simulation with High-Performance Computers II

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NONUFM,volume 48))

  • 1030 Accesses

Summary

The first section gives a description of the numerical procedure which is used for the integration of structured grid blocks. Such blocks are the basic elements of the self-adaptive grid structure. A hierarchically ordered level system, which reflects different refinement stages, serves as a scaffold. After a description of sensors used for refining interesting flow phenomena, an overview about the integration steps is given. The application of AMRFLEX3D to the cases of a three-dimensional, inviscid, supersonic corner flow and of a delta wing at transonic flow conditions is presented. For the latter simulation, both Euler and Navier-Stokes equations are used. Conclusions that can be drawn from experiences with grid refinement investigations are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dadone, A., AND Grossman, B. Surface Boundary Conditions for the Numerical Solution of the Euler Equations. AIAA Journal 32, 2 (1994), 285–293.

    Article  MATH  Google Scholar 

  2. Eberle, A. Characteristic Flux Averaging Approach to the Solution of Eulers Equations. VKI-Lecture Series 1987-04, 1987.

    Google Scholar 

  3. Elsenaar, A. Summary of NLR Wind Tunnel Tests on the International Vortex Flow Model. Tech. Rep. Memorandum AC-87-023 L, NLR, 1987.

    Google Scholar 

  4. Elsenaar, A., AND Hoeijmakers, H. An Experimental Study of the Flow over a Sharp-Edged Delta Wing at Subsonic and Transonic Speeds. In Vortex Flow Aerodynamics (1991), pp. 15-1–15-19. AGARD-CP-494.

    Google Scholar 

  5. Fischer, J.Sensors for Self-Adapting Grid Generation in Viscous Flow Computations, Vol. 35 of NNFM. Vieweg, Braunschweig/Wiesbaden, 1992, pp. 365–375.

    Google Scholar 

  6. Fischer, J. Selbstadaptive, lokale Netzverfeinerung für die numerische Simulation kompressibler, reibungsbehafteter Strömungen. Doctoral Thesis, 1993. Universität Stuttgart.

    Google Scholar 

  7. Fischer, J. Self-adaptive mesh refinement for the computation of steady, compressible, viscous flows. Z. Flugwiss. Weltraumforsch. 18 (1994), 241–252.

    Google Scholar 

  8. Fischer, J., AND Hirschel, E. H.Adaptive Navier-Stokes Calculations Using a Combination of an Implicit Finite — Volume Method with a Hierarchically Ordered Grid Structure, Vol. 38 of NNFM. Vieweg, Braunschweig/Wiesbaden, 1993, pp. 279–294. Flow Simulation with High Performance Computers I.

    Google Scholar 

  9. Greza, H., Bikker, S., AND Koschel, W. Efficient FEM Flow Simulation on Unstructured Adaptive Meshes. In this publication.

    Google Scholar 

  10. Hentschel, R. Entwicklung und Anwendung eines dreidimensionalen selbstadap-tiven Verfahrens auf der Basis strukturierter Gitter. Doctoral Thesis, 1996. Universität Stuttgart.

    Google Scholar 

  11. Hentschel, R., AND Hirschel, E. H. Self Adaptive Flow Computations on Structured Grids. In Computational Fluid Dynamics —94 (September 1994), S. Wagner, E. H. Hirschel, J. Periaux, and R. Piva, Eds., John Wiley & Sons, pp. 242–249.

    Google Scholar 

  12. Landgrebe, A. J. New Directions in Rotorcraft Computational Aerodynamics Research in the U.S. In Aerodynamics and Aeroacoustics of Rotorcraft (1995), pp. 1-1–1-12. AGARD-CP-552.

    Google Scholar 

  13. Marsilio, R. Vortical Solutions in Supersonic Corner Flows. AIAA Journal 31 (1993), 1651–1658.

    Article  MATH  Google Scholar 

  14. Michl, T. Effiziente Euler-und Navier-Stokes Löser für den Einsatz auf Vektor-Hochleistungsrechnern und massiv-parallelen Systemen. Doctoral Thesis, 1995. Universität Stuttgart.

    Google Scholar 

  15. Schmatz, M. A.Three-Dimensional Viscous Flow Simulations Using An Implicit Relaxation Scheme, Vol. 22 of NNFM. Vieweg, Braunschweig/Wiesbaden, 1987, pp. 226–243. Numerical Simulation of the Transonic DFVLR-F5 Wing Experiment.

    Google Scholar 

  16. Schwarz, W. IEPG-TA15 Aerodynamische Berechnungsverfahren, Teil 2. Tech. Rep. DASA/LME211/S/R/1619, DASA-LM, 1993.

    Google Scholar 

  17. Vilsmeier, R., AND Hänel, D. Computational Aspects of Flow Simulation on 3-D, Unstructured, Adaptive Grids. In this publication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Hentschel, R., Hirschel, E.H. (1996). AMRFLEX3D — Flow Simulation Using a Three-Dimensional Self-Adaptive, Structured Multi-Block Grid System. In: Hirschel, E.H. (eds) Flow Simulation with High-Performance Computers II. Notes on Numerical Fluid Mechanics (NNFM), vol 48. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-89849-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89849-4_29

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-89851-7

  • Online ISBN: 978-3-322-89849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics