Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 578))

Included in the following conference series:

Abstract

Gait recognition has received significant attention in the recent years due to its applications in numerous fields of computer vision, particularly in automated person identification in visual surveillance and monitoring systems. In this paper, we propose a novel algorithm for gait recognition using spatio-temporal motion characteristics of a person. The proposed algorithm consists of four steps. First, motion features are extracted from video sequence which are used to generate a codebook in the second step. In a third step, the local descriptors are encoded using Fisher vector encoding. Finally, the encoded features are classified using linear Support Vector Machine (SVM). The performance of the proposed algorithm is evaluated and compared with state-of-the-art on two widely used gait databases TUM GAID and CASIA-A. The recognition results demonstrate the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bashir, K., Xiang, T., Gong, S.: Gait recognition without subject cooperation. Pattern Recognit. Lett. 31(13), 2052–2060 (2010)

    Article  Google Scholar 

  2. Bashir, K., Xiang, T., Gong, S., Mary, Q.: Gait representation using flow fields. In: BMVC, pp. 1–11 (2009)

    Google Scholar 

  3. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: speeded up robust features. In: ECCV 2006, pp. 404–417 (2006)

    Google Scholar 

  4. Bouchrika, I., Nixon, M.S.: Model-based feature extraction for gait analysis and recognition. In: Gagalowicz, A., Philips, W. (eds.) MIRAGE 2007. LNCS, vol. 4418, pp. 150–160. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71457-6_14

    Chapter  Google Scholar 

  5. Chai, Y., Wang, Q., Jia, J., Zhao, R.: A novel human gait recognition method by segmenting and extracting the region variance feature. IEEE ICPR 4, 425–428 (2006)

    Google Scholar 

  6. Chen, C., Liang, J., Zhao, H., Hu, H., Tian, J.: Frame difference energy image for gait recognition with incomplete silhouettes. Pattern Recognit. Lett. 30(11), 977–984 (2009)

    Article  Google Scholar 

  7. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE CVPR, vol. 1, pp. 886–893, June 2005

    Google Scholar 

  8. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: ECCV, pp. 428–441 (2006)

    Google Scholar 

  9. Fan, R.E., et al.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

    MATH  Google Scholar 

  10. Gianaria, E., Balossino, N., Grangetto, M., Lucenteforte, M.: Gait characterization using dynamic skeleton acquisition. In: Proceedings of International Workshop Multimedia Signal Process, (MMSP), pp. 440–445, September 2013

    Google Scholar 

  11. Hofmann, M., Bachmann, S., Rigoll, G.: 2.5D gait biometrics using the depth gradient histogram energy image. In: IEEE BTAS, pp. 399–403 (2012)

    Google Scholar 

  12. Khan, M.H., Helsper, J., Yang, C., Grzegorzek, M.: An automatic vision-based monitoring system for accurate Vojta-therapy. In: IEEE/ACIS ICIS, pp. 1–6 (2016)

    Google Scholar 

  13. Khan, M.H., Helsper, J., Boukhers, Z., Grzegorzek, M.: Automatic recognition of movement patterns in the Vojta-therapy using RGB-D data. In: IEEE ICIP, pp. 1235–1239 (2016)

    Google Scholar 

  14. Khan, M.H., Shirahama, K., Farid, M.S., Grzegorzek, M.: Multiple human detection in depth images. In: IEEE International Workshop on MMSP, pp. 1–6 (2016)

    Google Scholar 

  15. Kusakunniran, W.: Attribute-based learning for gait recognition using spatio-temporal interest points. Image Vis. Comput. 32(12), 1117–1126 (2014)

    Article  Google Scholar 

  16. Lam, T.H., Cheung, K.H., Liu, J.N.: Gait flow image: a silhouette-based gait representation for human identification. Pattern Recognit. 44(4), 973–987 (2011)

    Article  MATH  Google Scholar 

  17. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: IEEE CVPR, pp. 1–8, June 2008

    Google Scholar 

  18. Little, J., Boyd, J.: Recognizing people by their gait: the shape of motion. Videre J. Comput. Vis. Res. 1(2), 1–32 (1998)

    Google Scholar 

  19. Lowe, D.G.: Object recognition from local scale-invariant features. In: EEE ICCV, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  20. Man, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2006)

    Article  Google Scholar 

  21. McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, New York (2004)

    MATH  Google Scholar 

  22. Nixon, M.S., Tan, T., Chellappa, R.: Human Identification Based on Gait. Springer, Heidelberg (2010)

    Google Scholar 

  23. Peng, X., Wang, L., Wang, X., Qiao, Y.: Bag of visual words and fusion methods for action recognition: comprehensive study and good practice. Comput. Vis. Image Underst. 150, 109–125 (2016). http://www.sciencedirect.com/science/article/pii/S1077314216300091

    Article  Google Scholar 

  24. Peng, X., Zou, C., Qiao, Y., Peng, Q.: Action recognition with stacked fisher vectors. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, pp. 581–595. Springer, Heidelberg (2014)

    Google Scholar 

  25. Perronnin, F., Sánchez, J., Mensink, T.: Improving the Fisher Kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_11

    Chapter  Google Scholar 

  26. Sanchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: theory and practice. Int. J. Comput. Vis. 105(3), 222–245 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sivapalan, S., Chen, D., Denman, S., Sridharan, S., Fookes, C.: Gait energy volumes and frontal gait recognition using depth images. In: IEEE IJCB, pp. 1–6 (2011)

    Google Scholar 

  28. Sivapalan, S., Chen, D., Denman, S., Sridharan, S., Fookes, C.: Histogram of weighted local directions for gait recognition. In: IEEE CVPR Workshop, pp. 125–130 (2013)

    Google Scholar 

  29. Sun, C., Nevatia, R.: Large-scale web video event classification by use of fisher vectors. In: IEEE WACV, pp. 15–22 (2013)

    Google Scholar 

  30. Wang, C., Zhang, J., Wang, L., Pu, J., Yuan, X.: Human identification using temporal information preserving gait template. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2164–2176 (2012)

    Article  Google Scholar 

  31. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: IEEE ICCV, pp. 3551–3558 (2013)

    Google Scholar 

  32. Wang, L., Ning, H., Tan, T., Hu, W.: Fusion of static and dynamic body biometrics for gait recognition. IEEE Trans. Circuits Syst. Video Technol. 14(2), 149–158 (2004)

    Article  Google Scholar 

  33. Wang, L., Tan, T., Hu, W., Ning, H.: Automatic gait recognition based on statistical shape analysis. IEEE Trans. Image Process. 12(9), 1120–1131 (2003)

    Article  MathSciNet  Google Scholar 

  34. Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1505–1518 (2003)

    Article  Google Scholar 

  35. Whytock, T., Belyaev, A., Robertson, N.M.: Dynamic distance-based shape features for gait recognition. J. Math. Imaging Vis. 50(3), 314–326 (2014)

    Article  MATH  Google Scholar 

  36. Yang, Y., Tu, D., Li, G.: Gait recognition using flow histogram energy image. In: IEEE ICPR, pp. 444–449. IEEE (2014)

    Google Scholar 

  37. Zeng, W., Wang, C., Yang, F.: Silhouette-based gait recognition via deterministic learning. Pattern Recognit. 47(11), 3568–3584 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Hassan Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Khan, M.H., Li, F., Farid, M.S., Grzegorzek, M. (2018). Gait Recognition Using Motion Trajectory Analysis. In: Kurzynski, M., Wozniak, M., Burduk, R. (eds) Proceedings of the 10th International Conference on Computer Recognition Systems CORES 2017. CORES 2017. Advances in Intelligent Systems and Computing, vol 578. Springer, Cham. https://doi.org/10.1007/978-3-319-59162-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59162-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59161-2

  • Online ISBN: 978-3-319-59162-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics