Skip to main content

Machine Learning and Data Mining Methods for Managing Parkinson’s Disease

  • Chapter
  • First Online:
Machine Learning for Health Informatics

Abstract

Parkinson’s disease (PD) results primarily from dying of dopaminergic neurons in the Substantia Nigra, a part of the Mesencephalon (midbrain), which is not curable to date. PD medications treat symptoms only, none halt or retard dopaminergic neuron degeneration. Here machine learning methods can be of help since one of the crucial roles in the management and treatment of PD patients is detection and classification of tremors. In the clinical practice, this is one of the most common movement disorders and is typically classified using behavioral or etiological factors. Another important issue is to detect and evaluate PD related gait patterns, gait initiation and freezing of gait, which are typical symptoms of PD. Medical studies have shown that 90% of people with PD suffer from vocal impairment, consequently the analysis of voice data to discriminate healthy people from PD is relevant. This paper provides a quick overview of the state-of-the-art and some directions for future research, motivated by the ongoing PD_manager project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.parkinson-manager.eu/.

  2. 2.

    Standard distance: a statistic mainly used for spatial GIS data, to measure compactness of a distribution.

  3. 3.

    https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring.

  4. 4.

    https://archive.ics.uci.edu/ml/datasets/Parkinsons.

  5. 5.

    http://www.clowdflows.org/.

References

  1. Holzinger, A.: Trends in interactive knowledge discovery for personalized medicine: cognitive science meets machine learning. IEEE Intell. Inf. Bull. 15, 6–14 (2014)

    Google Scholar 

  2. Dauer, W., Przedborski, S.: Parkinson’s disease: mechanisms and models. Neuron 39, 889–909 (2003)

    Article  Google Scholar 

  3. Kranjc, J., Podpečan, V., Lavrač, N.: ClowdFlows: a cloud based scientific workflow platform. In: Flach, P.A., Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7524, pp. 816–819. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33486-3_54

    Chapter  Google Scholar 

  4. Mladenic, D., Lavrač, N., Bohanec, M., Moyle, S. (eds.): Data Mining and Decision Support: Integration and Collaboration. The Springer International Series in Engineering and Computer Science. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  5. Tomar, D., Agarwal, S.: A survey on data mining approaches for healthcare. Int. J. Bio Sci. Bio Technol. 5, 241–266 (2013)

    Article  Google Scholar 

  6. Findley, L.J.: Classification of tremors. J. Clin. Neurophysiol. 13, 122–132 (1996)

    Article  Google Scholar 

  7. Budzianowska, A., Honczarenko, K.: Assessment of rest tremor in parkinson’s disease. Polish J. Neurol. Neurosurg. 42, 12–21 (2008)

    Google Scholar 

  8. Jankovic, J.: Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79, 368–376 (2008)

    Article  Google Scholar 

  9. Timmer, J., Gantert, C., Deuschl, G., Honerkamp, J.: Characteristics of hand tremor time series. Biol. Cybern. 70, 75–80 (1993)

    Article  MATH  Google Scholar 

  10. Riviere, C.N., Reich, S.G., Thakor, N.V.: Adaptive fourier modelling for quantification of tremor. J. Neurosci. Methods 74, 77–87 (1997)

    Article  Google Scholar 

  11. Patel, S., Hughes, R., Huggins, N., Standaert, D., Growdon, J., Dy, J., Bonato, P.: Using wearable sensors to predict the severity of symptoms and motor complications in late stage parkinson’s disease. In: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3686–3689 (2008)

    Google Scholar 

  12. Patel, S., Lorincz, K., Hughes, R., Huggins, N., Growdon, J., Standaert, D., Akay, M., Dy, J., Welsh, M., Bonato, P.: Monitoring motor fluctuations in patients with parkinson’s disease using wearable sensors. IEEE Trans. Inf. Technol. Biomed. 13, 864–873 (2009)

    Article  Google Scholar 

  13. Rigas, G., Tzallas, A.T., Tsipouras, M.G., Bougia, P., Tripoliti, E., Baga, D., Fotiadis, D.I., Tsouli, S., Konitsiotis, S.: Assessment of tremor activity in the parkinson’s disease using a set of wearable sensors. IEEE Trans. Inf. Technol. Biomed. 16, 478–487 (2012)

    Article  Google Scholar 

  14. Wu, D., Warwick, K., Ma, Z., Burgess, J., Pan, S., Aziz, T.: Prediction of parkinson’s disease tremor onset using radial basis function neural networks. Expert Syst. Appl. 37, 2923–2928 (2010)

    Article  Google Scholar 

  15. Muniz, A.M., Liu, H., Lyons, K., Pahwa, R., Liu, W., Nobre, F.F., Nadal, J.: Comparison among probabilistic neural network, support vector machine and logistic regression for evaluating the effect of subthalamic stimulation in parkinson disease on ground reaction force during gait. J. Biomech. 43, 720–726 (2010)

    Article  Google Scholar 

  16. Tahir, N.M., Manap, H.H.: Parkinson disease gait classification based on machine learning approach. J. Appl. Sci. 12, 180–185 (2012)

    Article  Google Scholar 

  17. Bloem, B.R., Hausdor, J.M., Visser, J.E., Giladi, N.: Falls and freezing of gait in parkinson’s disease: a review of two interconnected, episodic phenomena. Mov. Disorders J. 19, 871–884 (2004)

    Article  Google Scholar 

  18. Giladi, N., Tal, J., Azulay, T., Rascol, O., Brooks, D.J., Melamed, E., Oertel, W., Poewe, W.H., Stocchi, F., Tolosa, E.: Validation of the freezing of gait questionnaire in patients with parkinson’s disease. Mov. Disorders J. 24, 655–661 (2009)

    Article  Google Scholar 

  19. Nieuwboer, A., Dom, R., De Weerdt, W., Desloovere, K., Janssens, L., Stijn, V.: Electromyographic profiles of gait prior to onset of freezing episodes in patients with parkinson’s disease. Brain 127, 1650–1660 (2004)

    Article  Google Scholar 

  20. Delval, A., Snijders, A.H., Weerdesteyn, V., Duysens, J.E., Defebvre, L., Giladi, N., Bloem, B.R.: Objective detection of subtle freezing of gait episodes in parkinson’s disease. Mov. Disorders J. 25, 1684–1693 (2010)

    Article  Google Scholar 

  21. Hausdor, J.M., Schaafsma, J.D., Balash, Y., Bartels, A.L., Gurevich, T., Giladi, N.: Impaired regulation of stride variability in parkinson’s disease subjects with freezing of gait. Exp. Brain Res. 149, 187–194 (2003)

    Article  Google Scholar 

  22. Tripoliti, E.E., Tzallas, A.T., Tsipouras, M.G., Rigas, G., Bougia, P., Leontiou, M., Konitsiotis, S., Chondrogiorgi, M., Tsouli, S., Fotiadis, D.I.: Automatic detection of freezing of gait events in patients with parkinson’s disease. Comput. Methods Prog. Biomed. 110, 12–26 (2013)

    Article  Google Scholar 

  23. Han, J.H., Lee, W.J., Ahn, T.B., Jeon, B.S., Park, K.S.: Gait analysis for freezing detection in patients with movement disorder using three dimensional acceleration system. In: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2, pp. 1863–1865. Medicine and Biology Society (2003)

    Google Scholar 

  24. Bächlin, M., Plotnik, M., Roggen, D., Giladi, N., Hausdor, J.M., Tröster, G.: A wearable system to assist walking of parkinson s disease patients. Methods Inf. Med. 49, 88–95 (2010)

    Google Scholar 

  25. Muniz, A.M., Nadal, J., Lyons, K., Pahwa, R., Liu, W.: Long-term evaluation of gait initiation in six parkinson’s disease patients with bilateral subthalamic stimulation. Gait Posture 35, 452–457 (2012)

    Article  Google Scholar 

  26. Little, M.A., McSharry, P., Hunter, E.J., Spielman, J., Ramig, L.O.: Suitability of dysphonia measurements for telemonitoring of parkinsons disease. IEEE Trans. Biomed. Eng. 56, 1015–1022 (2009)

    Article  Google Scholar 

  27. Das, R.: A comparison of multiple classification methods for diagnosis of parkinson disease. Expert Syst. Appl. 37, 1568–1572 (2010)

    Article  Google Scholar 

  28. Eskidere, O., Ertaç, F., Hanilçi, C.: A comparison of regression methods for remote tracking of parkinsons disease progression. Expert Syst. Appl. 39, 5523–5528 (2012)

    Article  Google Scholar 

  29. Chen, H.L., Huang, C.C., Yu, X.G., Xu, X., Sun, X., Wang, G., Wang, S.J.: An efficient diagnosis system for detection of parkinsons disease using fuzzy k-nearest neighbor approach. Expert Syst. Appl. 40, 263–271 (2013)

    Article  Google Scholar 

  30. Little, M.A., McSharry, P.E., Roberts, S.J., Costello, D.A.E., Moroz, I.M.: Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. BioMed. Eng. OnLine 6, 23 (2007)

    Article  Google Scholar 

  31. Tsanas, A., Little, M., McSharry, P.E., Ramig, L.O.: Accurate telemonitoring of parkinson’s disease progression by noninvasive speech tests. IEEE Trans. Biomed. Eng. 57, 884–893 (2010)

    Article  Google Scholar 

  32. Li, D.C., Liu, C.W., Hu, S.C.: A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets. Artif. Intell. Med. 52, 45–52 (2011)

    Article  Google Scholar 

  33. Exarchos, T.P., Tzallas, A.T., Baga, D., Chaloglou, D., Fotiadis, D.I., et al.: Using partial decision trees to predict parkinsons symptoms: a new approach for diagnosis and therapy in patients suffering from parkinsons disease. Comput. Biol. Med. 42, 195204 (2012b)

    Article  Google Scholar 

  34. Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V., Young, M.: Machine learning: the high interest credit card of technical debt. In: SE4ML: Software Engineering for Machine Learning (NIPS 2014 Workshop) (2014)

    Google Scholar 

  35. Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inf. (BRIN) 3, 119–131 (2016)

    Article  Google Scholar 

  36. Hund, M., Böhm, D., Sturm, W., Sedlmair, M., Schreck, T., Ullrich, T., Keim, D.A., Majnaric, L., Holzinger, A.: Visual analytics for concept exploration in subspaces of patient groups: making sense of complex datasets with the doctor-in-the-loop. Brain Inf. 3(4), 233–247 (2016)

    Google Scholar 

  37. Girardi, D., Küng, J., Kleiser, R., Sonnberger, M., Csillag, D., Trenkler, J., Holzinger, A.: Interactive knowledge discovery with the doctor-in-the-loop: a practical example of cerebral aneurysms research. Brain Inf. 3(3), 133–143 (2016)

    Google Scholar 

  38. Yimam, S.M., Biemann, C., Majnaric, L., Sabanovic, S., Holzinger, A.: An adaptive annotation approach for biomedical entity and relation recognition. Brain Inf. 3, 1–12 (2016)

    Article  Google Scholar 

  39. Holzinger, A., Plass, M., Holzinger, K., Crişan, G.C., Pintea, C.-M., Palade, V.: Towards interactive machine learning (iML): applying ant colony algorithms to solve the traveling salesman problem with the human-in-the-loop approach. In: Buccafurri, F., Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-ARES 2016. LNCS, vol. 9817, pp. 81–95. Springer, Heidelberg (2016). doi:10.1007/978-3-319-45507-5_6

    Chapter  Google Scholar 

  40. Sun, Y., Han, Y.: Mining Heterogeneous Information Networks: Principles and Methodologies. Synthesis Lectures on Data Mining and Knowledge Discovery. Morgan & Claypool Publishers, San Francisco (2012)

    Google Scholar 

  41. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–117 (1975)

    Article  Google Scholar 

  42. Lemke, C., Budka, M., Gabrys, B.: Metalearning: a survey of trends and technologies. Artif. Intell. Rev. 44, 117–130 (2015)

    Article  Google Scholar 

  43. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-heuristics: an emerging direction in modern search technology. International Series in Operations Research and Management Science, pp. 457–474 (2003)

    Google Scholar 

  44. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64, 1695–1724 (2013)

    Article  Google Scholar 

  45. Malle, B., Kieseberg, P., Weippl, E., Holzinger, A.: The right to be forgotten: towards machine learning on perturbed knowledge bases. In: Buccafurri, F., Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-ARES 2016. LNCS, vol. 9817, pp. 251–266. Springer, Heidelberg (2016). doi:10.1007/978-3-319-45507-5_17

    Chapter  Google Scholar 

Download references

Acknowledgments

The work of the authors was supported by the PD_manager project, funded within the EU Framework Programme for Research and Innovation Horizon 2020, under grant number 643706.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Miljkovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Miljkovic, D., Aleksovski, D., Podpečan, V., Lavrač, N., Malle, B., Holzinger, A. (2016). Machine Learning and Data Mining Methods for Managing Parkinson’s Disease. In: Holzinger, A. (eds) Machine Learning for Health Informatics. Lecture Notes in Computer Science(), vol 9605. Springer, Cham. https://doi.org/10.1007/978-3-319-50478-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50478-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50477-3

  • Online ISBN: 978-3-319-50478-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics