Skip to main content

The Personalization of Drug Therapy for Elderly Patients

  • Chapter
  • First Online:
Developing Drug Products in an Aging Society

Abstract

Personalized drug therapy, described as tailoring the selection of drug and drug dosing to a given patient in order to optimize efficacy and minimize toxicity, has been a longstanding goal in medicine. This goal has been met at various levels of success for different patients and patient populations. While specific dosing regimens and labeling recommendations based on clinical trial data are available for adults, they are frequently lacking for pediatrics and geriatrics. These special patient populations are clinically understudied resulting in a lack of data to be used for establishing respective optimal drug and dosing regimen. While regulators around the globe have responded to this unmet medical need by establishing or updating pediatric guidance documents, the situation is much less evolved for geriatrics. However, there is a plethora of ongoing research, which ranges from reaching expert consensus to genotyping frailty that is geared towards improving the situation. The objective of this book chapter is to introduce and discuss personalized medicine approaches for the elderly patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lesko LJ, Schmidt S. Individualization of drug therapy: history, present state, and opportunities for the future. Clin Pharmacol Ther. 2012;92(4):458–66.

    CAS  PubMed  Google Scholar 

  2. U.S. Department of Health and Human Services Food and Drug Administration. A biological approach to patient treatment. 2012 [updated 2012 Oct 24] [cited 2015 Sep 17]. Available from: http://www.fda.gov/Drugs/NewsEvents/ucm325475.htm.

  3. Cristofoletti R, Dressman JB. Use of physiologically based pharmacokinetic models coupled with pharmacodynamic models to assess the clinical relevance of current bioequivalence criteria for generic drug products containing Ibuprofen. J Pharm Sci. 2014;103(10):3263–75.

    Article  CAS  PubMed  Google Scholar 

  4. Herrlinger C, Klotz U. Drug metabolism and drug interactions in the elderly. Best Pract Res Clin Gastroenterol. 2001;15(6):897–918.

    Article  CAS  PubMed  Google Scholar 

  5. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. E7 studies in support of special populations: geriatrics. 1993. Available from: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E7/Step4/E7_Guideline.pdf. Accessed 14 Sept 2015.

  6. Beers E, Egberts TC, Leufkens HG, Jansen PA. Information for adequate prescribing to older patients: an evaluation of the product information of 53 recently approved medicines. Drugs Aging. 2013;30(4):255–62.

    Article  PubMed  Google Scholar 

  7. Masoudi FA, Havranek EP, Wolfe P, Gross CP, Rathore SS, Steiner JF, et al. Most hospitalized older persons do not meet the enrollment criteria for clinical trials in heart failure. Am Heart J. 2003;146(2):250–7.

    Article  PubMed  Google Scholar 

  8. U.S. Department of Health and Human Services Food and Drug Administration. Guidance for industry: E7 studies in support of special populations. Geriatrics Silver Spring: Maryland; 2012. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm189544.pdf. Accessed on 1 Aug 2015.

  9. European Medicines Agency. Studies in support of special populations: geriatrics, questions and answers. London: UK; 2010. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/10/WC500005218.pdf. Accessed on 1 Aug 2015.

  10. Golden AG, Tewary S, Dang S, Roos BA. Care management’s challenges and opportunities to reduce the rapid rehospitalization of frail community-dwelling older adults. Gerontologist. 2010;50(4):451–8.

    Article  PubMed  Google Scholar 

  11. Lewis JH, Kilgore ML, Goldman DP, Trimble EL, Kaplan R, Montello MJ, et al. Participation of patients 65 years of age or older in cancer clinical trials. J Clin Oncol. 2003;21(7):1383–9.

    Article  PubMed  Google Scholar 

  12. Herrera AP, Snipes SA, King DW, Torres-Vigil I, Goldberg DS, Weinberg AD. Disparate inclusion of older adults in clinical trials: priorities and opportunities for policy and practice change. Am J Public Health. 2010;1(100 Suppl 1):S105–12.

    Article  Google Scholar 

  13. Cherubini A, Del Signore S, Ouslander J, Semla T, Michel JP. Fighting against age discrimination in clinical trials. J Am Geriatr Soc. 2010;58(9):1791–6.

    Article  PubMed  Google Scholar 

  14. Swanlund SL. Successful cardiovascular medication management processes as perceived by community-dwelling adults over age 74. Appl Nurs Res. 2010;23(1):22–9.

    Article  PubMed  Google Scholar 

  15. Vidal EI, Mayoral VF, Villas Boas PJ, Jacinto AF, Fukushima FB. Physical frailty as a clinical marker of biological age and aging. J Am Geriatr Soc. 2015;63(4):837–8.

    Google Scholar 

  16. Saltzman JR, Kowdley KV, Perrone G, Russell RM. Changes in small-intestine permeability with aging. J Am Geriatr Soc. 1995;43(2):160–4.

    Article  CAS  PubMed  Google Scholar 

  17. Madsen JL, Graff J. Effects of ageing on gastrointestinal motor function. Age Ageing. 2004;33(2):154–9.

    Article  PubMed  Google Scholar 

  18. Kyle UG, Genton L, Slosman DO, Pichard C. Fat-free and fat mass percentiles in 5225 healthy subjects aged 15 to 98 years. Nutrition. 2001;17(7–8):534–41.

    Google Scholar 

  19. Schoeller DA. Changes in total body water with age. Am J Clin Nutr. 1989;50(5 Suppl):1176–81; discussion 231–5.

    Google Scholar 

  20. Klotz U, Avant GR, Hoyumpa A, Schenker S, Wilkinson GR. The effects of age and liver disease on the disposition and elimination of diazepam in adult man. J Clin Invest. 1975;55(2):347–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Turnheim K. Drug dosage in the elderly. Is it rational? Drugs Aging. 1998;13(5):357–79.

    Article  CAS  PubMed  Google Scholar 

  22. McLean AJ, Le Couteur DG. Aging biology and geriatric clinical pharmacology. Pharmacol Rev. 2004;56(2):163–84.

    Article  CAS  PubMed  Google Scholar 

  23. Robertson DR, Wood ND, Everest H, Monks K, Waller DG, Renwick AG, et al. The effect of age on the pharmacokinetics of levodopa administered alone and in the presence of carbidopa. Br J Clin Pharmacol. 1989;28(1):61–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gardner MD, Scott R. Age- and sex-related reference ranges for eight plasma constituents derived from randomly selected adults in a Scottish new town. J Clin Pathol. 1980;33(4):380–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Veering BT, Burm AG, Souverijn JH, Serree JM, Spierdijk J. The effect of age on serum concentrations of albumin and alpha 1-acid glycoprotein. Br J Clin Pharmacol. 1990;29(2):201–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng CK, Chan J, Cembrowski GS, van Assendelft OW. Complete blood count reference interval diagrams derived from NHANES III: stratification by age, sex, and race. Lab Hematol. 2004;10(1):42–53.

    Article  PubMed  Google Scholar 

  27. Tietz NW, Shuey DF, Wekstein DR. Laboratory values in fit aging individuals—sexagenarians through centenarians. Clin Chem. 1992;38(6):1167–85.

    CAS  PubMed  Google Scholar 

  28. Verbeeck RK, Cardinal JA, Wallace SM. Effect of age and sex on the plasma binding of acidic and basic drugs. Eur J Clin Pharmacol. 1984;27(1):91–7.

    Article  CAS  PubMed  Google Scholar 

  29. Le Couteur DG, McLean AJ. The aging liver. Drug clearance and an oxygen diffusion barrier hypothesis. Clin Pharmacokinet. 1998;34(5):359–73.

    Article  PubMed  Google Scholar 

  30. Benedetti MS, Whomsley R, Canning M. Drug metabolism in the paediatric population and in the elderly. Drug Discov Today. 2007;12(15–16):599–610.

    Article  CAS  PubMed  Google Scholar 

  31. Dean L. Clopidogrel therapy and CYP2C19 genotype. 2012 [updated 2013 Mar 18]. Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2012. Available from: http://www.ncbi.nlm.nih.gov/books/NBK84114/.

  32. Cusack BJ. Pharmacokinetics in older persons. Am J Geriatr Pharmacother. 2004;2(4):274–302.

    Article  CAS  PubMed  Google Scholar 

  33. Kinirons MT, O’Mahony MS. Drug metabolism and ageing. Br J Clin Pharmacol. 2004;57(5):540–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zeeh J, Platt D. The aging liver: structural and functional changes and their consequences for drug treatment in old age. Gerontology. 2002;48(3):121–7.

    Google Scholar 

  35. Temellini A, Giuliani L, Pacifici GM. Interindividual variability in the glucuronidation and sulphation of ethinyloestradiol in human liver. Br J Clin Pharmacol. 1991;31(6):661–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wynne HA, Cope LH, Mutch E, Rawlins MD, Woodhouse KW, James OF. The effect of age upon liver volume and apparent liver blood flow in healthy man. Hepatology. 1989;9(2):297–301.

    Article  CAS  PubMed  Google Scholar 

  37. Abernethy DR, Schwartz JB, Todd EL, Luchi R, Snow E. Verapamil pharmacodynamics and disposition in young and elderly hypertensive patients. Altered electrocardiographic and hypotensive responses. Ann Intern Med. 1986;105(3):329–36.

    Article  CAS  PubMed  Google Scholar 

  38. Rigby JW, Scott AK, Hawksworth GM, Petrie JC. A comparison of the pharmacokinetics of atenolol, metoprolol, oxprenolol and propranolol in elderly hypertensive and young healthy subjects. Br J Clin Pharmacol. 1985;20(4):327–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Griffiths GJ, Robinson KB, Cartwright GO, McLachlan MS. Loss of renal tissue in the elderly. Br J Radiol. 1976;49(578):111–7.

    Article  CAS  PubMed  Google Scholar 

  40. Kane R, Ouslander J, Abrass I, Resnick B. Essentials of clinical geriatrics. 7th ed. New York: McGraw-Hill; 2013.

    Google Scholar 

  41. Nyengaard JR, Bendtsen TF. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec. 1992;232(2):194–201.

    Article  CAS  PubMed  Google Scholar 

  42. Goyal VK. Changes with age in the human kidney. Exp Gerontol. 1982;17(5):321–31.

    Article  CAS  PubMed  Google Scholar 

  43. Triggs E, Charles B. Pharmacokinetics and therapeutic drug monitoring of gentamicin in the elderly. Clin Pharmacokinet. 1999;37(4):331–41.

    Article  CAS  PubMed  Google Scholar 

  44. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53(6):982–92.

    Article  CAS  PubMed  Google Scholar 

  45. Rule AD, Gussak HM, Pond GR, Bergstralh EJ, Stegall MD, Cosio FG, et al. Measured and estimated GFR in healthy potential kidney donors. Am J Kidney Dis. 2004;43(1):112–9.

    Article  PubMed  Google Scholar 

  46. Peters AM, Perry L, Hooker CA, Howard B, Neilly MD, Seshadri N, et al. Extracellular fluid volume and glomerular filtration rate in 1878 healthy potential renal transplant donors: effects of age, gender, obesity and scaling. Nephrol Dial Transplant. 2012;27(4):1429–37.

    Article  CAS  PubMed  Google Scholar 

  47. Grewal GS, Blake GM. Reference data for 51Cr-EDTA measurements of the glomerular filtration rate derived from live kidney donors. Nucl Med Commun. 2005;26(1):61–5.

    Article  PubMed  Google Scholar 

  48. Back SE, Ljungberg B, Nilsson-Ehle I, Borga O, Nilsson-Ehle P. Age dependence of renal function: clearance of iohexol and p-amino hippurate in healthy males. Scand J Clin Lab Invest. 1989;49(7):641–6.

    Article  CAS  PubMed  Google Scholar 

  49. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.

    Article  CAS  PubMed  Google Scholar 

  50. Praga M, Morales E. Obesity-related renal damage: changing diet to avoid progression. Kidney Int. 2010;78(7):633–5.

    Article  CAS  PubMed  Google Scholar 

  51. Fried LF, Orchard TJ, Kasiske BL. Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int. 2001;59(1):260–9.

    Article  CAS  PubMed  Google Scholar 

  52. Lindeman RD, Tobin JD, Shock NW. Association between blood pressure and the rate of decline in renal function with age. Kidney Int. 1984;26(6):861–8.

    Article  CAS  PubMed  Google Scholar 

  53. Luft FC, Fineberg NS, Miller JZ, Rankin LI, Grim CE, Weinberger MH. The effects of age, race and heredity on glomerular filtration rate following volume expansion and contraction in normal man. Am J Med Sci. 1980;279(1):15–24.

    Google Scholar 

  54. Schaeffner ES, Ebert N, Delanaye P, Frei U, Gaedeke J, Jakob O, et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med. 2012;157(7):471–81.

    Article  PubMed  Google Scholar 

  55. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Knight EL, Verhave JC, Spiegelman D, Hillege HL, de Zeeuw D, Curhan GC, et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 2004;65(4):1416–21.

    Article  CAS  PubMed  Google Scholar 

  57. Beers MH, Ouslander JG, Rollingher I, Reuben DB, Brooks J, Beck JC. Explicit criteria for determining inappropriate medication use in nursing home residents. UCLA Division of Geriatric Medicine. Arch Intern Med. 1991;151(9):1825–32.

    Article  CAS  PubMed  Google Scholar 

  58. Beers MH. Explicit criteria for determining potentially inappropriate medication use by the elderly. An update. Arch Intern Med. 1997;157(14):1531–6.

    Article  CAS  PubMed  Google Scholar 

  59. Fick DM, Cooper JW, Wade WE, Waller JL, Maclean JR, Beers MH. Updating the Beers Criteria for potentially inappropriate medication use in older adults: results of a US consensus panel of experts. Arch Intern Med. 2003;163(22):2716–24.

    Google Scholar 

  60. Fick DM, Semla TP. 2012 American Geriatrics Society Beers Criteria: new year, new criteria, new perspective. J Am Geriatr Soc. 2012;60(4):614–5.

    Article  PubMed  Google Scholar 

  61. American Geriatric society 2015 Beers Criteria Update Expert Panel. American Geriatric Society 2015 update Beers criteria for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2015;63(11):2227–2246.

    Google Scholar 

  62. Golden A, Silverman M, Daiello L, Llorente M. Inappropriate medication prescribing: going beyond the Beer’s Criteria. Long-Term Care Interface Mag. 2005;6:31–4.

    Google Scholar 

  63. Gallagher P, O’Mahony D. STOPP (Screening Tool of Older Persons’ potentially inappropriate Prescriptions): application to acutely ill elderly patients and comparison with Beers’ Criteria. Age Ageing. 2008;37(6):673–9.

    Article  PubMed  Google Scholar 

  64. O’Mahony D, O’Sullivan D, Byrne S, O’Connor MN, Ryan C, Gallagher P. STOPP/START criteria for potentially inappropriate prescribing in older people: version 2. Age Ageing. 2015;44(2):213–8.

    Article  PubMed  Google Scholar 

  65. Budnitz DS, Lovegrove MC, Shehab N, Richards CL. Emergency hospitalizations for adverse drug events in older Americans. N Engl J Med. 2011;365(21):2002–12.

    Article  CAS  PubMed  Google Scholar 

  66. Golden A, Beers MH, Fick DM. Is it safe to conclude that Beers Criteria medications led to few adverse events? Ann Intern Med. 2008;148(8):628–9; author reply 9.

    Google Scholar 

  67. Zineh I, Huang SM. Biomarkers in drug development and regulation: a paradigm for clinical implementation of personalized medicine. Biomark Med. 2011;5(6):705–13.

    Article  CAS  PubMed  Google Scholar 

  68. Samant TS, Mangal N, Lukacova V, Schmidt S. Quantitative clinical pharmacology for size and age scaling in pediatric drug development: a systematic review. J Clin Pharmacol. 2015.

    Google Scholar 

  69. Lagishetty C. Covariates in pharmacometrics. PhD thesis, University of Otago; 2013 http://hdl.handle.net/10523/4520. Accessed on 15 Sept 2015.

  70. Bristol-Myers Squibb, Pfizer EEIG. Eliquis (apixaban) summary of product characteristics. 2013 http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002148/WC500107728.pdf. Accessed on 15 Sept 2015.

  71. Mueck W, Stampfuss J, Kubitza D, Becka M. Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban. Clin Pharmacokinet. 2014;53(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  72. Saeed MA, Vlasakakis G, Della Pasqua O. Rational use of medicines in older adults: Can we do better during clinical development? Clin Pharmacol Ther. 2015;97(5):440–3.

    Article  CAS  PubMed  Google Scholar 

  73. Boissel JP, Kahoul R, Marin D, Boissel FH. Effect model law: an approach for the implementation of personalized medicine. J Pers Med. 2013;3(3):177–90.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chabaud S, Girard P, Nony P, Boissel JP. Clinical trial simulation using therapeutic effect modeling: application to ivabradine efficacy in patients with angina pectoris. J Pharmacokinet Pharmacodyn. 2002;29(4):339–63.

    Article  CAS  PubMed  Google Scholar 

  75. U.S. Department of Health and Human Services Food and Drug Administration. General clinical pharmacology considerations for pediatric studies for drugs and biological products. Silver Spring: Maryland; 2014. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM425885.pdf.%202014. Accessed on 12 Sept 2015.

  76. Huang SM, Abernethy DR, Wang Y, Zhao P, Zineh I. The utility of modeling and simulation in drug development and regulatory review. J Pharm Sci. 2013;102(9):2912–23.

    Article  CAS  PubMed  Google Scholar 

  77. Yamazaki S, Skaptason J, Romero D, Vekich S, Jones HM, Tan W, et al. Prediction of oral pharmacokinetics of cMet kinase inhibitors in humans: physiologically based pharmacokinetic model versus traditional one-compartment model. Drug Metab Dispos. 2011;39(3):383–93.

    Article  CAS  PubMed  Google Scholar 

  78. Allan G, Davis J, Dickins M, Gardner I, Jenkins T, Jones H, et al. Pre-clinical pharmacokinetics of UK-453,061, a novel non-nucleoside reverse transcriptase inhibitor (NNRTI), and use of in silico physiologically based prediction tools to predict the oral pharmacokinetics of UK-453,061 in man. Xenobiotica. 2008;38(6):620–40.

    Article  CAS  PubMed  Google Scholar 

  79. Jones HM, Dickins M, Youdim K, Gosset JR, Attkins NJ, Hay TL, et al. Application of PBPK modelling in drug discovery and development at Pfizer. Xenobiotica. 2012;42(1):94–106.

    Article  CAS  PubMed  Google Scholar 

  80. Hammerlein A, Derendorf H, Lowenthal DT. Pharmacokinetic and pharmacodynamic changes in the elderly. Clinical implications. Clin Pharmacokinet. 1998;35(1):49–64.

    Article  CAS  PubMed  Google Scholar 

  81. Borst SE, Scarpace PJ. Reduced high-affinity alpha 1-adrenoceptors in liver of senescent rats: implications of assessment at various temperatures. Br J Pharmacol. 1990;101(3):650–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Morley JE, Flood JF, Silver AJ. Opioid peptides and aging. Ann NY Acad Sci. 1990;579:123–32.

    Article  CAS  PubMed  Google Scholar 

  83. De Buck SS, Sinha VK, Fenu LA, Nijsen MJ, Mackie CE, Gilissen RA. Prediction of human pharmacokinetics using physiologically based modeling: a retrospective analysis of 26 clinically tested drugs. Drug Metab Dispos. 2007;35(10):1766–80.

    Article  PubMed  Google Scholar 

  84. Sinha VK, Snoeys J, Osselaer NV, Peer AV, Mackie C, Heald D. From preclinical to human—prediction of oral absorption and drug-drug interaction potential using physiologically based pharmacokinetic (PBPK) modeling approach in an industrial setting: a workflow by using case example. Biopharm Drug Dispos. 2012;33(2):111–21.

    Article  CAS  PubMed  Google Scholar 

  85. Schaller S, Willmann S, Lippert J, Schaupp L, Pieber TR, Schuppert A, et al. A generic integrated physiologically based whole-body model of the glucose-insulin-glucagon regulatory system. CPT Pharmacometrics Syst Pharmacol. 2013;2:e65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Colburn WA et al. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.

    Google Scholar 

  87. Danhof M, Alvan G, Dahl SG, Kuhlmann J, Paintaud G. Mechanism-based pharmacokinetic-pharmacodynamic modeling-a new classification of biomarkers. Pharm Res. 2005;22(9):1432–7.

    Article  CAS  PubMed  Google Scholar 

  88. Emdin M, Vittorini S, Passino C, Clerico A. Old and new biomarkers of heart failure. Eur J Heart Fail. 2009;11(4):331–5.

    Article  CAS  PubMed  Google Scholar 

  89. Ershler WB. Interleukin-6: a cytokine for gerontologists. J Am Geriatr Soc. 1993;41(2):176–81.

    Article  CAS  PubMed  Google Scholar 

  90. Yeh SS, Blackwood K, Schuster MW. The cytokine basis of cachexia and its treatment: are they ready for prime time? J Am Med Dir Assoc. 2008;9(4):219–36.

    Article  PubMed  Google Scholar 

  91. de Ruijter W, Westendorp RG, Assendelft WJ, den Elzen WP, de Craen AJ, le Cessie S, et al. Use of Framingham risk score and new biomarkers to predict cardiovascular mortality in older people: population based observational cohort study. BMJ. 2009;338:a3083.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bots ML, Launer LJ, Lindemans J, Hoes AW, Hofman A, Witteman JC, et al. Homocysteine and short-term risk of myocardial infarction and stroke in the elderly: the Rotterdam Study. Arch Intern Med. 1999;159(1):38–44.

    Article  CAS  PubMed  Google Scholar 

  93. Searle SD, Mitnitski A, Gahbauer EA, Gill TM, Rockwood K. A standard procedure for creating a frailty index. BMC Geriatr. 2008;8:24.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Reuben DB, Cheh AI, Harris TB, Ferrucci L, Rowe JW, Tracy RP, et al. Peripheral blood markers of inflammation predict mortality and functional decline in high-functioning community-dwelling older persons. J Am Geriatr Soc. 2002;50(4):638–44.

    Article  PubMed  Google Scholar 

  95. Salanitro AH, Ritchie CS, Hovater M, Roth DL, Sawyer P, Locher JL, et al. Inflammatory biomarkers as predictors of hospitalization and death in community-dwelling older adults. Arch Gerontol Geriatr. 2012;54(3):e387–91.

    Google Scholar 

  96. Mitnitski AB, Graham JE, Mogilner AJ, Rockwood K. Frailty, fitness and late-life mortality in relation to chronological and biological age. BMC Geriatr. 2002;27(2):1.

    Article  Google Scholar 

  97. Golden A, Troen B. Biology of aging. In: Hirth V, Wieland D, Dever-Bumba M, editors. Case-based geriatrics. New York: McGraw Hill; 2010.

    Google Scholar 

  98. Butler RN, Sprott R, Warner H, Bland J, Feuers R, Forster M, et al. Biomarkers of aging: from primitive organisms to humans. J Gerontol A Biol Sci Med Sci. 2004;59(6):B560–7.

    Article  PubMed  Google Scholar 

  99. Brooks-Wilson AR. Genetics of healthy aging and longevity. Hum Genet. 2013;132(12):1323–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Miles C, Wayne M. Quantitative trait locus (QTL) analysis. Nat Educ. 2008;1(1):208.

    Google Scholar 

  101. Oztaner SM, Taskaya Temizel T, Erdem SR, Ozer M. A Bayesian estimation framework for pharmacogenomics driven warfarin dosing: a comparative study. IEEE J Biomed Health Inform. 2015;19(5):1724–33.

    Google Scholar 

  102. Mallal S, Phillips E, Carosi G, Molina JM, Workman C, Tomazic J, et al. HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med. 2008;358(6):568–79.

    Article  PubMed  Google Scholar 

  103. U.S. Department of Health and Human Services Food and Drug Administration. Table of pharmacogenomic biomarkers in drug labeling. 2015 [updated 2015 May 20] [cited 2015 Sep 17]. Available from: http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm.

  104. Miao L, Yang J, Huang C, Shen Z. Contribution of age, body weight, and CYP2C9 and VKORC1 genotype to the anticoagulant response to warfarin: proposal for a new dosing regimen in Chinese patients. Eur J Clin Pharmacol. 2007;63(12):1135–41.

    Article  CAS  PubMed  Google Scholar 

  105. Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther. 2008;84(3):326–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood. 2005;106(7):2329–33.

    Article  CAS  PubMed  Google Scholar 

  107. Bor JS. The search for effective Alzheimer’s therapies: a work in progress. Health Aff (Millwood). 2014;33(4):527–33.

    Article  Google Scholar 

  108. U.S. Department of Health and Human Services Food and Drug Administration. Guidance for industry: pediatric study plans. Silver Spring: Maryland; 2013. Available at: http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm360507.pdf. Accessed on 1 Aug 2015.

  109. European Parliament and of the Council. Regulation (EC) No. 1901/2006 of the European Parliament and of the Council on medicinal products for paediatric use and amending Regulation (EEC) No. 1768/92, Directive 2001/20/EC, Directive 2001/83/EC and Regulation (EC) No. 726/2004; 2006. Available at: http://ec.europa.eu/health/files/eudralex/vol-1/reg_2006_1901/reg_2006_1901_en.pdf. Accessed on 1 Aug 2015.

  110. Kang BP, Slosberg E, Snodgrass S, Lebedinsky C, Berry DA, Corless CL, et al. The signature program: bringing the protocol to the patient. Clin Pharmacol Ther. 2015;98(2):124–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Berry SM, Broglio KR, Groshen S, Berry DA. Bayesian hierarchical modeling of patient subpopulations: efficient designs of Phase II oncology clinical trials. Clin Trials. 2013;10(5):720–34.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Schlender, J.F., Golden, A.G., Samant, T.S., Lagishetty, C.V., Schmidt, S. (2016). The Personalization of Drug Therapy for Elderly Patients. In: Stegemann, S. (eds) Developing Drug Products in an Aging Society. AAPS Advances in the Pharmaceutical Sciences Series, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-43099-7_28

Download citation

Publish with us

Policies and ethics