[14]

D. Agarwal, B.-C. Chen, and B. Long. Localized factor models for multi-context recommendation. *ACM KDD Conference*, pp. 609–617, 2011.

[22]

C. Aggarwal. Data mining: the textbook. *Springer*, New York, 2015.

[65]

X. Bao. Applying machine learning for prediction, recommendation, and integration.

*Ph.D dissertation*, Oregon State University, 2009.

http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/12549/Dissertation_XinlongBao.pdf?sequence=1
[66]

X. Bao, L. Bergman, and R. Thompson. Stacking recommendation engines with additional meta-features. *ACM Conference on Recommender Systems*, pp. 109–116, 2009.

[67]

A. Bar, L. Rokach, G. Shani, B. Shapira, and A. Schclar. Boosting simple collaborative filtering models using ensemble methods.

*Arxiv Preprint*, arXiv:1211.2891, 2012. Also appears in

*Multiple Classifier Systems*, Springer, pp. 1–12, 2013.

http://arxiv.org/ftp/arxiv/papers/1211/1211.2891.pdf
[68]

J. Basilico, and T. Hofmann. Unifying collaborative and content-based filtering. *International Conference on Machine Learning*, 2004.

[69]

C. Basu, H. Hirsh, and W. Cohen. Recommendation as classification: using social and content-based information in recommendation. *AAAI*, pp. 714–720, 1998.

[72]

R. Bell and Y. Koren. Scalable collaborative filtering with jointly derived neighborhood interpolation weights. *IEEE International Conference on Data Mining*, pp. 43–52, 2007.

[85]

D. Billsus and M. Pazzani. User modeling for adaptive news access.

*User Modeling and User-Adapted Interaction*, 10(2–3), pp. 147–180, 2000.

CrossRef[99]

L. Breiman. Bagging predictors.

*Machine Learning*, 24(2), pp. 123–140, 1996.

MathSciNetMATH[111]

P. Buhlmann. Bagging, subagging and bragging for improving some prediction algorithms, *Recent advances and trends in nonparametric statistics*, Elsivier, 2003.

[112]

P. Buhlmann and B. Yu. Analyzing bagging.

*Annals of statistics*, 20(4), pp. 927–961, 2002.

MathSciNetMATH[113]

L. Breiman. Bagging predictors.

*Machine learning*, 24(2), pp. 123–140, 1996.

MathSciNetMATH[117]

R. Burke. Hybrid recommender systems: Survey and experiments.

*User Modeling and User-adapted Interaction*, 12(4), pp. 331–370, 2002.

CrossRefMATH[118]

R. Burke. Hybrid Web recommender systems. *The adaptive Web*, pp. 377–406, Springer, 2007.

[121]

R. Burke, K. Hammond, and B. Young. The FindMe approach to assisted browsing.

*IEEE Expert*, 12(4), pp. 32–40, 1997.

CrossRef[129]

L. M. de Campos, J. Fernandez-Luna, J. Huete, and M. Rueda-Morales. Combining content-based and collaborative recommendations: A hybrid approach based on Bayesian networks.

*International Journal of Approximate Reasoning*, 51(7), pp. 785–799, 2010.

CrossRef[162]

M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes, and M. Sartin. Combining content-based and collaborative filters in an online newspaper. *Proceedings of the ACM SIGIR Workshop on Recommender Systems: Algorithms and Evaluation*, 1999.

[166]

M. Condliff, D. Lewis, D. Madigan, and C. Posse. Bayesian mixed-effects models for recommender systems. *ACM SIGIR Workshop on Recommender Systems: Algorithms and Evaluation*, pp. 23–30, 1999.

[180]

D. DeCoste. Collaborative prediction using ensembles of maximum margin matrix factorizations. *International Conference on Machine Learning*, pp. 249–256, 2006.

[206]

Y. Freund, and R. Schapire. A decision-theoretic generalization of online learning and application to boosting. *Computational Learning Theory*, pp. 23–37, 1995.

[207]

Y. Freund and R. Schapire. Experiments with a new boosting algorithm. *ICML Conference*, pp. 148–156, 1996.

[238]

A. Gunawardana and C. Meek. A unified approach to building hybrid recommender systems. *ACM Conference on Recommender Systems*, pp. 117–124, 2009.

[242]

T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning. *Springer*, 2009.

[266]

M. Jahrer, A. Toscher, and R. Legenstein. Combining predictions for accurate recommender systems. *ACM KDD Conference*, pp. 693–702, 2010.

[275]

D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich. An introduction to recommender systems, *Cambridge University Press*, 2011.

[311]

Y. Koren. The Bellkor solution to the Netflix grand prize.

*Netflix prize documentation*, 81, 2009.

http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf
[338]

J.-S. Lee and S. Olafsson. Two-way cooperative prediction for collaborative filtering recommendations.

*Expert Systems with Applications*, 36(3), pp. 5353–5361, 2009.

CrossRef[363]

M. Littlestone and M. Warmuth. The weighted majority algorithm.

*Information and computation*, 108(2), pp. 212–261, 1994.

MathSciNetCrossRefMATH[411]

J. McAuley and J. Leskovec. Hidden factors and hidden topics: understanding rating dimensions with review text. *ACM Conference on Recommender systems*, pp. 165–172, 2013.

[431]

P. Melville, R. Mooney, and R. Nagarajan. Content-boosted collaborative filtering for improved recommendations. *AAAI/IAAI*, pp. 187–192, 2002.

[448]

R. J. Mooney and L. Roy. Content-based book recommending using learning for text categorization. *ACM Conference on Digital libraries*, pp. 195–204, 2000.

[456]

X. Ning and G. Karypis. Sparse linear methods with side information for top-n recommendations. *ACM Conference on Recommender Systems*, pp. 155–162, 2012.

[475]

M. Pazzani. A framework for collaborative, content-based and demographic filtering. *Artificial Intelligence Review*, 13, (5–6), 1999.

[526]

B. Sarwar, J. Konstan, A. Borchers, J. Herlocker, B. Miller, and J. Riedl. Using filtering agents to improve prediction quality in the grouplens research collaborative filtering system. *ACM Conference on Computer Supported Cooperative Work*, pp. 345–354, 1998.

[534]

I. Schwab, A. Kobsa, and I. Koychev. Learning user interests through positive examples using content analysis and collaborative filtering. Internal Memo, GMD, St. Augustin, Germany, 2001.

[554]

J. Sill, G. Takacs, L. Mackey, and D. Lin. Feature-weighted linear stacking.

*arXiv preprint*, arXiv:0911.0460, 2009.

http://arxiv.org/pdf/0911.0460.pdf
[557]

A. P. Singh and G. J. Gordon. Relational learning via collective matrix factorization. *ACM KDD Conference*, pp. 650–658, 2008.

[559]

B. Smyth and P. Cotter. A personalized television listings service.

*Communications of the ACM*, 43(8), pp. 107–111, 2000.

CrossRef[600]

R. Torres, S. M. McNee, M. Abel, J. Konstan, and J. Riedl. Enhancing digital libraries with TechLens+. *ACM/IEEE-CS Joint Conference on Digital libraries*, pp. 228–234, 2004.

[601]

T. Tran and R. Cohen. Hybrid recommender systems for electronic commerce. *Knowledge-Based Electronic Markets, Papers from the AAAI Workshop*, Technical Report WS-00-04, pp. 73–83, 2000.

[610]

M. van Satten. Supporting people in finding information: Hybrid recommender systems and goal-based structuring. *Ph.D. Thesis*, Telemetica Instituut, University of Twente, Netherlands, 2005.

[623]

A. M. Ahmad Wasfi. Collecting user access patterns for building user profiles and collaborative filtering. *International Conference on Intelligent User Interfaces*, pp. 57–64, 1998.

[634]

D. H. Wolpert.

*Stacked generalization*. Neural Networks, 5(2), pp. 241–259, 1992.

MathSciNetCrossRef[637]

M. Wu. Collaborative filtering via ensembles of matrix factorizations. *Proceedings of the KDD Cup and Workshop*, 2007.

[652]

K. Yu, A. Shcwaighofer, V. Tresp, W.-Y. Ma, and H. Zhang. Collaborative ensemble learning. combining collaborative and content-based filtering via hierarchical Bayes, *Conference on Uncertainty in Artificial Intelligence*, pp. 616–623, 2003.

[658]

F. Zaman and H. Hirose. Effect of subsampling rate on subbagging and related ensembles of stable classifiers. *Lecture Notes in Computer Science*, Springer, Volume 5909, pp. 44–49, 2009.

[659]

M. Zanker and M. Jessenitschnig. Case studies on exploiting explicit customer requirements in recommender systems.

*User Modeling and User-Adapted Interaction*, 19(1–2), pp. 133–166, 2009.

CrossRef[660]

M. Zanker, M. Aschinger, and M. Jessenitschnig. Development of a collaborative and constraint-based web configuration system for personalized bundling of products and services. *Web Information Systems Engineering–WISE*, pp. 273–284, 2007.

[661]

M. Zanker, M. Aschinger, and M. Jessenitschnig. Constraint-based personalised configuring of product and service bundles.

*International Journal of Mass Customisation*, 3(4), pp. 407–425, 2010.

CrossRef[704]