Chapter

Recommender Systems

pp 309-344

Date:

Structural Recommendations in Networks

  • Charu C. AggarwalAffiliated withIBM T.J. Watson Research Center

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The growth of various Web-enabled networks has enabled numerous models of recommendation. For example, the Web itself is a large and distributed repository of data, and a search engine such as Google can be considered a keyword-centric variation of the notion of recommendation. In fact, a major discourse in the recommendation literature is to distinguish between the notions of search and recommendations. While search technologies also recommend content to users, the results are often not personalized to the user at hand. This lack of personalization has traditionally been the case because of the historical difficulty in tracking large numbers of Web users. However, in recent years, many personalized notions of search have arisen, where the Web pages recommended to users are based on personal interests. Many search engine providers, such as Google, now provide the ability to determine personalized results. This problem is exactly equivalent to that of ranking nodes in networks with the use of personalized preferences.