[16]

E. Agichtein, C. Castillo, D. Donato, A. Gionis, and G. Mishne. Finding high-quality content in social media. *Web Search and Data Mining Conference*, pp. 183–194, 2008.

[22]

C. Aggarwal. Data mining: the textbook. *Springer*, New York, 2015.

[23]

C. Aggarwal and J. Han. Frequent pattern mining. *Springer*, New York, 2014.

[36]

C. Aggarwal, Y. Xie, and P. Yu. On dynamic link inference in heterogeneous networks. *SIAM Conference on Data Mining*, pp. 415–426, 2012.

[42]

M. Al Hasan, and M. J. Zaki. A survey of link prediction in social networks. *Social network data analytics*, Springer, pp. 243–275, 2011.

[56]

A. Azran. The rendezvous algorithm: Multiclass semi-supervised learning with markov random walks. *International Conference on Machine Learning*, pp. 49–56, 2007.

[77]

S. Bhagat, G. Cormode, and S. Muthukrishnan. Node classification in social networks. *Social Network Data Analytics*, Springer, pp. 115–148. 2011.

[80]

B. Bi, Y. Tian, Y. Sismanis, A. Balmin, and J. Cho. Scalable topic-specific influence analysis on microblogs. *Web Search and Data Mining Conference*, pp. 513–522, 2014.

[81]

J. Bian, Y. Liu, D. Zhou, E. Agichtein, and H. Zha. Learning to recognize reliable users and content in social media with coupled mutual reinforcement. *World Wide Web Conference*, pp. 51–60, 2009.

[104]

S. Brin, and L. Page. The anatomy of a large-scale hypertextual web search engine. *Computer Networks*, 30(1–7), pp. 107–117, 1998.

[143]

S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext categorization using hyperlinks. *ACM SIGMOD Conference*, pp. 307–318, 1998.

[152]

W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social networks. *ACM KDD Conference*, pp. 199–208, 2009.

[153]

W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for prevalent viral marketing in large-scale social networks. *ACM KDD Conference*, pp. 1029–1038, 2010.

[154]

W. Chen, Y. Yuan, and L. Zhang. Scalable influence maximization in social networks under the linear threshold model. *IEEE International Conference on Data Mining*, pp. 88–97, 2010.

[157]

K. Y. Chiang, C. J. Hsieh, N. Natarajan, I. S., Dhillon, and A. Tewari. Prediction and clustering in signed networks: a local to global perspective. *The Journal of Machine Learning Research*, 15(1), pp. 1177–1213, 2014.

[176]

P. Domingos and M. Richardson. Mining the network value of customers. *ACM KDD Conference*, pp. 57–66, 2001.

[232]

M. Gori and A. Pucci. Itemrank: a random-walk based scoring algorithm for recommender engines. *IJCAI Conference*, pp. 2766–2771, 2007.

[233]

A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. A data-based approach to social influence maximization. *VLDB Conference*, pp. 73–84, 2011.

[234]

A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. Learning influence probabilities in social networks. *ACM WSDM Conference*, pp. 241–250, 2011.

[235]

Q. Gu, J. Zhou, and C. Ding. Collaborative filtering: Weighted nonnegative matrix factorization incorporating user and item graphs. *SIAM Conference on Data Mining*, pp. 199–210, 2010.

[243]

T. H. Haveliwala. Topic-sensitive pagerank. *World Wide Web Conference*, pp. 517–526, 2002.

[260]

Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. *IEEE International Conference on Data Mining*, pp. 263–272, 2008.

[278]

G. Jeh, and J. Widom. SimRank: a measure of structural-context similarity. *ACM KDD Conference*, pp. 538–543, 2003.

[297]

D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. *ACM KDD Conference*, pp. 137–146, 2003.

[302]

J. Kleinberg. Authoritative sources in a hyperlinked environment.

*Journal of the ACM (JACM)*, 46(5), pp. 604–632, 1999.

MathSciNetCrossRefMATH[306]

X. Kong, X. Shi, and P. S. Yu. Multi-Label collective classification. *SIAM Conference on Data Mining*, pp. 618–629, 2011.

[324]

J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E. De Luca, and S. Albayrak. Spectral analysis of signed graphs for clustering, prediction and visualization. *SIAM Conference on Data Mining*, pp. 559–559, 2010.

[325]

J. Kunegis, E. De Luca, and S. Albayrak. The link prediction problem in bipartite networks. *Computational Intelligence for Knowledge-based Systems Design*, Springer, pp. 380–389, 2010.

[326]

J. Kunegis and A. Lommatzsch. Learning spectral graph transformations for link prediction. *International Conference on Machine Learning*, pp. 562–568, 2009.

[346]

J. Leskovec, D. Huttenlocher, and J. Kleinberg. Predicting positive and negative links in online social networks. *World Wide Web Conference*, pp. 641–650, 2010.

[350]

M. Li, B. M. Dias, I. Jarman, W. El-Deredy, and P. J. Lisboa. Grocery shopping recommendations based on basket-sensitive random walk. *KDD Conference*, pp. 1215–1224, 2009.

[354]

D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks.

*Journal of the American society for information science and technology*, 58(7), pp. 1019–1031, 2007.

CrossRef[355]

R. Lichtenwalter, J. Lussier, and N. Chawla. New perspectives and methods in link prediction. *ACM KDD Conference*, pp. 243–252, 2010.

[369]

L. Liu, J. Tang, J. Han, M. Jiang, and S. Yang. Mining topic-level influence in heterogeneous networks. *ACM CIKM Conference*, pp. 199–208, 2010.

[375]

B. London, and L. Getoor. Collective classification of network data. *Data Classification: Algorithms and Applications*, CRC Press, pp. 399–416, 2014.

[379]

Q. Lu, and L. Getoor. Link-based classification. *ICML Conference*, pp. 496–503, 2003.

[387]

S. Macskassy, and F. Provost. A simple relational classifier. *Second Workshop on Multi-Relational Data Mining (MRDM) at ACM KDD Conference*, 2003.

[388]

S. A. Macskassy, and F. Provost. Classification in networked data: A toolkit and a univariate case study. *Joirnal of Machine Learning Research*, 8, pp. 935–983, 2007.

[432]

A. K. Menon, and C. Elkan. Link prediction via matrix factorization. *Machine Learning and Knowledge Discovery in Databases*, pp. 437–452, 2011.

[452]

G. Nemhauser, and L. Wolsey. Integer and combinatorial optimization. *Wiley*, New York, 1988.

[453]

J. Neville, and D. Jensen. Iterative classification in relational data. *AAAI Workshop on Learning Statistical Models from Relational Data*, pp. 13–20, 2000.

[465]

L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation engine: Bringing order to the web. *Technical Report*, 1999–0120, Computer Science Department, Stanford University, 1998.

[488]

G. Qi, C. Aggarwal, and T. Huang. Link prediction across networks by biased cross-network sampling. *IEEE ICDE Conference*, pp. 793–804, 2013.

[510]

M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral marketing. *ACM KDD Conference*, pp. 61–70, 2002.

[573]

K. Subbian, C. Aggarwal, and J. Srivasatava. Content-centric flow mining for influence analysis in social streams. *CIKM Conference*, pp. 841–846, 2013.

[575]

J. Sun and J. Tang. A survey of models and algorithms for social influence analysis. *Social Network Data Analytics*, Springer, pp. 177–214, 2011.

[576]

Y. Sun, J. Han, C. Aggarwal, and N. Chawla. When will it happen?: relationship prediction in heterogeneous information networks. *ACM International Conference on Web Search and Data Mining*, pp. 663–672, 2012.

[577]

Y. Sun, R. Barber, M. Gupta, C. Aggarwal, and J. Han. Co-author relationship prediction in heterogeneous bibliographic networks. *Advances in Social Networks Analysis and Mining (ASONAM)*, pp. 121–128, 2011.

[589]

J. Tang, J. Sun, C. Wang, and Z. Yang. Social influence analysis in large-scale networks. *ACM KDD Conference*, pp. 807–816, 2009.

[591]

J. Tang, S. Chang, C. Aggarwal, and H. Liu. Negative link prediction in social media. *Web Search and Data Mining Conference*, 2015.

[602]

M.-H. Tsai, C. Aggarwal, and T. Huang. Ranking in heterogeneous social media. *Web Search and Data Mining Conference*, 2014.

[639]

L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang, and J. Sun. Temporal recommendation on graphs via long-and short-term preference fusion. *ACM KDD Conference*, pp. 723–732, 2010.

[640]

Z. Xiang and U. Gretzel. Role of social media in online travel information search.

*Tourism Management*, 31(2), pp. 179–188, 2010.

CrossRef[663]

J. Zhang, M. Ackerman, and L. Adamic. Expertise networks in online communities: structure and algorithms. *World Wide Web Conference*, pp. 221–230, 2007.

[674]

D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Scholkopf. Learning with local and global consistency. *Advances in Neural Information Processing Systems*, 16(16), pp. 321–328, 2004.

[675]

D. Zhou, J. Huang, and B. Scholkopf. Learning from labeled and unlabeled data on a directed graph. *ICML Conference*, pp. 1036–1043, 2005.

[678]

X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and harmonic functions. *ICML Conference*, pp. 912–919, 2003.

[700]