Skip to main content

Convolutional Neural Networks for Multimedia Sentiment Analysis

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9362))

Abstract

Recently, user generated multimedia contents (e.g. text, image, speech and video) on social media are increasingly used to share their experiences and emotions, for example, a tweet usually contains both texts and images. Compared to sentiment analysis of texts and images separately, the combination of text and image may reveal tweet sentiment more adequately. Motivated by this rationale, we propose a method based on convolutional neural networks (CNN) for multimedia (tweets consist of text and image) sentiment analysis. Two individual CNN architectures are used for learning textual features and visual features, which can be combined as input of another CNN architecture for exploiting the internal relation between text and image. Experimental results on two real-world datasets demonstrate that the proposed method achieves effective performance on multimedia sentiment analysis by capturing the combined information of texts and images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. LeCun, Y., Boser, B., Denker, J.S., et al.: Backpropagation applied to handwritten zip code recognition. Neural computation 1(4), 541–551 (1989)

    Article  Google Scholar 

  2. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural computation 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ciresan, D.C., Meier, U., Masci, J., et al.: Flexible, high performance convolutional neural networks for image classification. In: IJCAI Proceedings-International Joint Conference on Artificial Intelligence 22(1), p. 1237 (2011)

    Google Scholar 

  4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)

    Google Scholar 

  5. Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6645–6649. IEEE (2013)

    Google Scholar 

  6. Kim, Y.: Convolutional neural networks for sentence classification (2014). arXiv preprint arXiv:1408.5882

    Google Scholar 

  7. dos Santos, C.N., Gatti, M.: Deep convolutional neural networks for sentiment analysis of short texts. In: Proceedings of the 25th International Conference on Computational Linguistics (COLING), Dublin, Ireland (2014)

    Google Scholar 

  8. Xu, C., Cetintas, S., Lee, K.C., et al.: Visual Sentiment Prediction with Deep Convolutional Neural Networks (2014). arXiv preprint arXiv:1411.5731

    Google Scholar 

  9. You, Q., Luo, J., Jin, H., et al.: Robust image sentiment analysis using progressively trained and domain transferred deep networks. In: The Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI) (2015)

    Google Scholar 

  10. Turney, P.D.: Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, pp. 417–424 (2002)

    Google Scholar 

  11. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL 2002 Conference on Empirical Methods in Natural Language Processing, vol. 10. Association for Computational Linguistics, pp. 79–86 (2002)

    Google Scholar 

  12. Socher, R., Pennington, J., Huang, E.H., et al.: Semi-supervised recursive autoencoders for predicting sentiment distributions. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 151–161. Association for Computational Linguistics (2011)

    Google Scholar 

  13. Jia, J., Wu, S., Wang, X., et al.: Can we understand van gogh’s mood?: learning to infer affects from images in social networks. In: Proceedings of the 20th ACM International Conference on Multimedia, pp. 857–860. ACM (2012)

    Google Scholar 

  14. Yang, Y., Jia, J., Zhang, S., et al.: How Do Your Friends on Social Media Disclose Your Emotions. In: Proc. AAAI, 14, pp. 1–7 (2014)

    Google Scholar 

  15. Yuan, J., Mcdonough, S., You, Q., et al.: Sentribute: image sentiment analysis from a mid-level perspective. In: Proceedings of the Second International Workshop on Issues of Sentiment Discovery and Opinion Mining, p. 10. ACM (2013)

    Google Scholar 

  16. Borth, D., Ji, R., Chen, T., et al.: Large-scale visual sentiment ontology and detectors using adjective noun pairs. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 223–232. ACM (2013)

    Google Scholar 

  17. Wang, M., Cao, D., Li, L., et al.: Microblog sentiment analysis based on cross-media bag-of-words model. In: Proceedings of International Conference on Internet Multimedia Computing and Service, p. 76 ACM (2014)

    Google Scholar 

  18. Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, pp. 1–12 (2009)

    Google Scholar 

  19. Mikolov, T., Chen, K., Corrado, G., et al.: Efficient estimation of word representations in vector space (2013). arXiv preprint arXiv:1301.3781

    Google Scholar 

  20. Caruana, R., Lawrence, S., Giles, C.L.: Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping. In: Advances in Neural Information Processing Systems 13, Proceedings of the 2000 Conference, p. 402. MIT Press (2001)

    Google Scholar 

  21. Hinton, G.E., Srivastava, N., Krizhevsky, A., et al.: Improving neural networks by preventing co-adaptation of feature detectors (2012). arXiv preprint arXiv:1207.0580

    Google Scholar 

  22. Dahl, G.E., Sainath, T.N., Hinton, G.E.: Improving deep neural networks for LVCSR using rectified linear units and dropout. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8609–8613. IEEE (2013)

    Google Scholar 

  23. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)

    Google Scholar 

  24. Plutchik, R.: Emotion: A psychoevolutionary synthesis. Harpercollins College Division (1980)

    Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint arXiv:1409.1556

    Google Scholar 

  26. Siersdorfer, S., Minack, E., Deng, F., et al.: Analyzing and predicting sentiment of images on the social web. In: Proceedings of the International Conference on Multimedia, pp. 715–718. ACM (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyong Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cai, G., Xia, B. (2015). Convolutional Neural Networks for Multimedia Sentiment Analysis. In: Li, J., Ji, H., Zhao, D., Feng, Y. (eds) Natural Language Processing and Chinese Computing. NLPCC 2015. Lecture Notes in Computer Science(), vol 9362. Springer, Cham. https://doi.org/10.1007/978-3-319-25207-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25207-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25206-3

  • Online ISBN: 978-3-319-25207-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics