Skip to main content

Distributed Control and Navigation System for Quadrotor UAVs in GPS-Denied Environments

  • Conference paper
Intelligent Systems'2014

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 323))

Abstract

The problem of developing distributed control and navigation system for quadrotor UAVs operating in GPS-denied environments is addressed in the paper. Cooperative navigation, marker detection and mapping task solved by a team of multiple unmanned aerial vehicles is chosen as demo example. Developed intelligent control system complies with on 4D\RCS reference model and its implementation is based on ROS framework. Custom implementation of EKF-based map building algorithm is used to solve marker detection and map building task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Robot Operation System, http://www.ros.org

  2. Parker, L.E.: Distributed control of multi-robot teams: Cooperative baton-passing task. In: Proceedings of the 4th International Conference on Information Systems Analysis and Synthesis (ISAS 1998), vol. 3, pp. 89–94 (1998b)

    Google Scholar 

  3. Feddema, J., Lewis, C., Schoenwald, D.: Decentralized control of cooperative robotic vehicles: Theory and application. IEEE Trans. Robot. Automat. 18, 852–864 (2002)

    Article  Google Scholar 

  4. Huntsberger, T.L., Trebi-Ollennu, A., Aghazarian, H., Schenker, P.S., Pirjanian, P., Nayar, H.D.: Distributed control of multi-robot systems engaged in tightly coupled tasks. Autonomous Robots 17(1), 79–92 (2004)

    Article  Google Scholar 

  5. Michael, N., Fink, J., Kumar, V.: Cooperative grasping and transportation using multiple quadrotors. In: International Symposium on Distributed Autonomous Robotic Systems (DARS), Lausanne, Switzerland (2011)

    Google Scholar 

  6. Charrow, B., Michael, N., Kumar, V.: Cooperative multirobot estimation and control for radio source localization. In: Desai, J.P., Dudek, G., Khatib, O., Kumar, V. (eds.) Experimental Robotics. STAR, vol. 88, pp. 337–351. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Walter, M., Leonard, J.: An experimental investigation of cooperative SLAM. In: 5th International Symposium on Intelligent Autonomous Vehicles, Lisbon, July 5-7 (2004)

    Google Scholar 

  8. Özkucur, N.E., Akın, H.L.: Cooperative multi-robot map merging using fast-slam. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS (LNAI), vol. 5949, pp. 449–460. Springer, Heidelberg (2010)

    Google Scholar 

  9. Kim, B., et al.: Multiple Relative Pose Graphs for Robust Cooperative Mapping. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3185–3192. © Copyright 2010 IEEE (2010)

    Google Scholar 

  10. Kaess, M., Ranganathan, A., Dellaert, F.: iSAM: Incremental smoothing and mapping. IEEE Trans. Robotics 24, 1365–1378 (2008)

    Article  Google Scholar 

  11. Nekkundi, P.S., Dulman, S.: A Framework for Cooperative 3D Mapping of Unstructured Environments. Master Thesis, Delft University of Technology (2011)

    Google Scholar 

  12. Jameson, S., Franke, J., Szczerba, R., Stockdale, S.: Collaborative Autonomy for Manned/Unmanned Teams. AHS International Forum 61. Grapevine, TX (2005)

    Google Scholar 

  13. Bonasso, R.P., Kortenkamp, D., Miller, D.P., Slack, M.: Experiences with an Architecture for Intelligent, Reactive Agents. In: Wooldridge, M., Müller, J.P., Tambe, M. (eds.) IJCAI-WS 1995 and ATAL 1995. LNCS, vol. 1037, pp. 187–202. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  14. Gat, E.: Integrating planning and reacting in a heterogenous asynchronous architecture for controlling real-world mobile robots. In: National Conference for Artificial Intelligence (1992)

    Google Scholar 

  15. Arkin, R.: Motor schema based navigation for a mobile robot: An approach to programming by behavior. In: Proceedings of the IEEE International Conference on Robotics and Automation (1987)

    Google Scholar 

  16. Freed, M., et al.: An Architecture for Intelligent Management of Aerial Observation Missions. In: AIAA 2005, pp. 2005–6938 (2005)

    Google Scholar 

  17. Ar.Drone 2.0, http://ardrone2.parrot.com/

  18. Bristeau, P.J., Callou, F., Vissière, D., Petit, N.: The navigation and control technology inside the AR.Drone micro UAV. In: 18th IFAC World Congress, vol. 18(1), pp. 1477–1484 (2011)

    Google Scholar 

  19. Albus, J., Huang, H.M., Messina, E., Murphy, K., Juberts, M., Lacaze, A., Finkelstein, R.: 4D/RCS Version 2.0: A reference model architecture for unmanned vehicle systems. National Institute of Standards and Technology, Gaithersburg (2002)

    Google Scholar 

  20. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., ... Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA Workshop on Open Source Software, vol. 3(3.2) (2009)

    Google Scholar 

  21. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: International Symposium on Mixed and Augmented Reality (2007)

    Google Scholar 

  22. Munoz-Salinas, R., Garrido-Jurado, S.: Aruco library, http://sourceforge.net/projects/aruco/

  23. Engel, J., Sturm, J., Cremers, D.: Camera-Based Navigation of a Low-Cost Quadrocopter. In: Proc. of the International Conference on Intelligent Robot Systems (IROS) (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Yakovlev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yakovlev, K., Khithov, V., Loginov, M., Petrov, A. (2015). Distributed Control and Navigation System for Quadrotor UAVs in GPS-Denied Environments. In: Filev, D., et al. Intelligent Systems'2014. Advances in Intelligent Systems and Computing, vol 323. Springer, Cham. https://doi.org/10.1007/978-3-319-11310-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11310-4_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11309-8

  • Online ISBN: 978-3-319-11310-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics