Skip to main content

Analysing the Multiple Timescale Recurrent Neural Network for Embodied Language Understanding

  • Conference paper
Artificial Neural Networks

Part of the book series: Springer Series in Bio-/Neuroinformatics ((SSBN,volume 4))

Abstract

How the human brain understands natural language and how we can exploit this understanding for building intelligent grounded language systems is open research. Recently, researchers claimed that language is embodied in most – if not all – sensory and sensorimotor modalities and that the brain’s architecture favours the emergence of language. In this chapter we investigate the characteristics of such an architecture and propose a model based on the Multiple Timescale Recurrent Neural Network, extended by embodied visual perception, and tested in a real world scenario. We show that such an architecture can learn the meaning of utterances with respect to visual perception and that it can produce verbal utterances that correctly describe previously unknown scenes. In addition we rigorously study the timescale mechanism (also known as hysteresis) and explore the impact of the architectural connectivity in the language acquisition task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barsalou, L.W.: Grounded cognition. Annual Review of Psychology 59, 617–645 (2008)

    Article  Google Scholar 

  2. Behrens, H.: Usage-based and emergentist approaches to language acquisition. Linguistics 47(2), 383–411 (2009)

    Article  Google Scholar 

  3. Berwick, R.C., Pietroski, P., Yankama, B., Chomsky, N.: Poverty of the stimulus revisited. Cognitive Science 35(7), 1207–1242 (2011)

    Article  Google Scholar 

  4. Borghi, A.M., Gianelli, C., Scorolli, C.: Sentence comprehension: effectors and goals, self and others. An overview of experiments and implications for robotics. Frontiers in Neurorobotics 4(3), 8 (2010)

    Google Scholar 

  5. Cangelosi, A.: Grounding language in action and perception: From cognitive agents to humanoid robots. Physics of Life Reviews 7(2), 139–151 (2010)

    Article  Google Scholar 

  6. Cangelosi, A., Riga, T.: An embodied model for sensorimotor grounding and grounding transfer: Experiments with epigenetic robots. Cognitive Science 30(4), 673–689 (2006)

    Article  Google Scholar 

  7. Cangelosi, A., Tikhanoff, V., Fontanari, J.F., Hourdakis, E.: Integrating language and cognition: A cognitive robotics approach. Computational Intelligence Magazine 2(3), 65–70 (2007)

    Article  Google Scholar 

  8. Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)

    Article  Google Scholar 

  9. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)

    Article  Google Scholar 

  10. Deacon, T.W.: The symbolic species: The co-evolution of language and the brain. W.W. Norton & Company (1997)

    Google Scholar 

  11. DeWitt, I., Rauschecker, J.P.: Phoneme and word recognition in the auditory ventral stream. Proceedings of the National Academy of Sciences 109(8), E505–E514 (2012)

    Google Scholar 

  12. Doya, K.: Recurrent networks: learning algorithms. In: Handbook of Brain Theory and Neural Networks, pp. 955–960. MIT Press (2003)

    Google Scholar 

  13. Duch, W., Jankowski, N.: Survey of neural transfer functions. Neural Computing Surveys 2, 163–212 (1999)

    Google Scholar 

  14. Eisenbeiß, S.: Generative approaches to language learning. Linguistics 47(2), 273–310 (2009)

    Article  Google Scholar 

  15. Elman, J.L.: Finding structure in time. Cognitive Science 14(2), 179–211 (1990)

    Article  Google Scholar 

  16. Feldman, J.A.: From Molecule to Metaphor: A Neural Theory of Language. The MIT Press (2006)

    Google Scholar 

  17. Frank, S.L.: Strong systematicity in sentence processing by an echo state network. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 505–514. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Frank, S.L., Haselager, W.F., van Rooij, I.: Connectionist semantic systematicity. Cognition 110(3), 358–379 (2009)

    Article  Google Scholar 

  19. Friston, K.: A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 815–836 (2005)

    Article  Google Scholar 

  20. Gilbert, C.D., Li, W.: Top-down influences on visual processing. Nature Reviews Neuroscience 14, 350–363 (2013)

    Article  Google Scholar 

  21. Harnad, S.: The symbol grounding problem. Physica D: Nonlinear Phenomena 42, 335–346 (1990)

    Article  Google Scholar 

  22. Heinrich, S., Weber, C., Wermter, S.: Adaptive learning of linguistic hierarchy in a multiple timescale recurrent neural network. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012, Part I. LNCS, vol. 7552, pp. 555–562. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Heinrich, S., Weber, C., Wermter, S.: Embodied language understanding with a multiple timescale recurrent neural network. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds.) ICANN 2013. LNCS, vol. 8131, pp. 216–223. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. Hickok, G., Poeppel, D.: The cortical organization of speech processing. Nature Reviews Neuroscience 8(5), 393–402 (2007)

    Article  Google Scholar 

  25. Hinoshita, W., Arie, H., Tani, J., Okuno, H.G., Ogata, T.: Emergence of hierarchical structure mirroring linguistic composition in a recurrent neural network. Neural Networks 24(4), 311–320 (2011)

    Article  Google Scholar 

  26. Hoffmann, T., Trousdale, G.: The Oxford handbook of construction grammar. Oxford University Press (2013)

    Google Scholar 

  27. Iglesias, J., Eriksson, J., Pardo, B., Tomassini, M., Villa, A.E.: Emergence of oriented cell assemblies associated with spike-timing-dependent plasticity. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 127–132. Springer, Heidelberg (2005)

    Google Scholar 

  28. Iglesias, J., Villa, A.E.: Recurrent spatiotemporal firing patterns in large spiking neural networks with ontogenetic and epigenetic processes. Journal of Physiology-Paris 104(3-4), 137–146 (2010)

    Article  Google Scholar 

  29. Jackendoff, R.: Foundations of language: Brain, meaning, grammar, evolution. Oxford University Press (2002)

    Google Scholar 

  30. Karmiloff, K., Karmiloff-Smith, A.: Pathways to language: From fetus to adolescent. Harvard University Press (2002)

    Google Scholar 

  31. Kullback, S.: Information Theory and Statistics. John Wiley, New York (1959)

    MATH  Google Scholar 

  32. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.R.: Efficient backprop. In: Orr, G.B., Müller, K.-R. (eds.) NIPS-WS 1996. LNCS, vol. 1524, pp. 9–50. Springer, Heidelberg (1998)

    Google Scholar 

  33. Mielke, A., Theil, F.: On rate-independent hysteresis models. Nonlinear Differential Equations and Applications NoDEA 11(2), 151–189 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  34. Orban, G.A.: Higher order visual processing in macaque extrastriate cortex. Physiological Reviews 88(1), 59–89 (2008)

    Article  MathSciNet  Google Scholar 

  35. Pulvermüller, F.: The Neuroscience of Language: On Brain Circuits of Words and Serial Order. Cambridge University Press (2003)

    Google Scholar 

  36. Pulvermüller, F., Fadiga, L.: Active perception: sensorimotor circuits as a cortical basis for language. Nature Reviews Neuroscience 11, 351–360 (2010)

    Article  Google Scholar 

  37. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: the rprop algorithm. In: Ruspini, E.H. (ed.) Proceedings of the IEEE International Conference on Neural Networks (ICNN 1993), vol. 1, pp. 586–591. IEEE, San Francisco (1993)

    Chapter  Google Scholar 

  38. Rohde, D.L.T.: A connectionist model of sentence comprehension and production. Ph.D. thesis, School of Computer Science, Carnegie Mellon University (2002)

    Google Scholar 

  39. Rohde, D.L.T., Plaut, D.C.: Connectionist models of language processing. Cognitive Studies 10(1), 10–28 (2003)

    Google Scholar 

  40. Roy, D.K., Pentland, A.P.: Learning words from sights and sounds: A computational model. Cognitive Science 26(1), 113–146 (2002)

    Article  Google Scholar 

  41. Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Graphical Models and Image Processing 30(1), 32–46 (1985)

    Article  MATH  Google Scholar 

  42. Tani, J., Ito, M.: Self-organization of behavioral primitives as multiple attractor dynamics: A robot experiment. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 33(4), 481–488 (2003)

    Article  Google Scholar 

  43. Wermter, S., Panchev, C., Arevian, G.: Hybrid neural plausibility networks for news agents. In: Ford, K., Forbus, K., Hayes, P., Kolodne, J., Luger, G. (eds.) Proceedings of the 16th National Conference on Artificial Intelligence (AAAI 1999), Orlando, USA, pp. 93–98 (1999)

    Google Scholar 

  44. Widrow, B., Hoff, M.E.: Adaptive switching circuits. IRE WESCON Convention Record 4, 96–104 (1960)

    Google Scholar 

  45. Williams, R.J., Zipser, D.: Gradient-based learning algorithms for recurrent networks and their computational complexity. In: Chauvin, Y., Rumelhart, D.E. (eds.) Backpropagation: Theory, Architectures, and Applications. Lawrence Erlbaum Associates, NJ (1995)

    Google Scholar 

  46. Yamashita, Y., Tani, J.: Emergence of functional hierarchy in a multiple timescale neural network model: A humanoid robot experiment. PLoS Computational Biology 4(11), e1000220 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Heinrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Heinrich, S., Magg, S., Wermter, S. (2015). Analysing the Multiple Timescale Recurrent Neural Network for Embodied Language Understanding. In: Koprinkova-Hristova, P., Mladenov, V., Kasabov, N. (eds) Artificial Neural Networks. Springer Series in Bio-/Neuroinformatics, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-09903-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09903-3_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09902-6

  • Online ISBN: 978-3-319-09903-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics