Skip to main content

Learning Gestalt Formations for Oscillator Networks

  • Conference paper
Artificial Neural Networks

Part of the book series: Springer Series in Bio-/Neuroinformatics ((SSBN,volume 4))

  • 4073 Accesses

Abstract

The binding of similar objects to a common group is an effortless task for humans.We know if things belong together or not by intuitively relying on a set of rules. In the area of visual perception, these rules can be described by the Laws of Gestalt. Although these laws are intuitive for humans to understand, a computational feasible formulation can be demanding.We present an improved approach to learn the computational formulations for these laws from labeled training data. The approach learns attraction and repelling interactions between features, which in turn can be used in artificial neural networks to decided whether input features belong to a common group or have to be separated. The technique is evaluated within different perceptual grouping scenarios and with two kinds of artificial neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arenas, A., Diaz-Guilera, A., Pérez-Vicente, C.J.: Synchronization processes in complex networks. Physica D: Nonlinear Phenomena 224(1), 27–34 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Bassett, D.S., Porter, M.A., Wymbs, N.F., Grafton, S.T., Carlson, J.M., Mucha, P.J.: Robust detection of dynamic community structure in networks. Chaos: An Interdisciplinary Journal of Nonlinear Science 23(1), 013,142–013,142 (2013)

    Google Scholar 

  • Breve, F.A., Zhao, L., Quiles, M.G., Macau, E.E.: Chaotic phase synchronization and desynchronization in an oscillator network for object selection. Neural Networks 22(5), 728–737 (2009)

    Article  Google Scholar 

  • Chang, D., Nesbitt, K.V., Wilkins, K.: The gestalt principles of similarity and proximity apply to both the haptic and visual grouping of elements. In: Proceedings of the Eight Australasian Conference on User Interface, vol. 64, pp. 79–86. Australian Computer Society, Inc. (2007)

    Google Scholar 

  • De Valois, R.L., Yund, W.E., Hepler, N.: The orientation and direction selectivity of cells in macaque visual cortex. Vision Research 22(5), 531–544 (1982)

    Article  Google Scholar 

  • Gallace, A., Spence, C.: To what extent do gestalt grouping principles influence tactile perception? Psychological Bulletin 137(4), 538 (2011)

    Article  Google Scholar 

  • Gray, C.M., Singer, W.: Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences 86(5), 1698–1702 (1989)

    Article  Google Scholar 

  • Heidemann, G., Ritter, H.J.: Efficient vector quantization using the wta-rule with activity equalization. Neural Processing Letters 13(1), 17–30 (2001)

    Article  MATH  Google Scholar 

  • Kuramoto, Y.: Chemical oscillations, waves, and turbulence. Dover (2003)

    Google Scholar 

  • Li, C., Li, Y.: Fast and robust image segmentation by small-world neural oscillator networks. Cognitive Neurodynamics 5(2), 209–220 (2011)

    Article  Google Scholar 

  • Meier, M., Haschke, R., Ritter, H.J.: Learning of lateral interactions for perceptual grouping employing information gain. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds.) ICANN 2013. LNCS, vol. 8131, pp. 178–185. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  • Meier, M., Haschke, R., Ritter, H.J.: Perceptual grouping through competition in coupled oscillator networks. In: ESANN (2013b)

    Google Scholar 

  • Meier, M., Haschke, R., Ritter, H.J.: Perceptual grouping by entrainment in coupled kuramoto oscillator networks. Network: Computation in Neural Systems 25(1-2), 72–84 (2014), http://informahealthcare.com/doi/abs/10.3109/0954898X.2014.882524 , doi:10.3109/0954898X.2014.882524

    Google Scholar 

  • Nomura, A., Ichikawa, M., Okada, K., Miike, H., Sakurai, T., Mizukami, Y.: Image edge detection with discretely spaced fitzhugh-nagumo type excitable elements. In: 2011 Joint 3rd Int’l Workshop on Nonlinear Dynamics and Synchronization (INDS) & 16th Int’l Symposium on Theoretical Electrical Engineering (ISTET), pp. 1–8. IEEE (2011)

    Google Scholar 

  • Ontrup, J., Wersing, H., Ritter, H.: A computational feature binding model of human texture perception. Cognitive Processing 5(1), 31–44 (2004)

    Article  Google Scholar 

  • Rao, S., Han, S., Principe, J.: Information theoretic vector quantization with fixed point updates. In: International Joint Conference on Neural Networks, IJCNN 2007, pp. 1020–1024 (2007), doi:10.1109/IJCNN.2007.4371098

    Google Scholar 

  • Rényi, A.: Some fundamental questions of information theory. Selected Papers of Alfred Renyi 2(174), 526–552 (1976)

    Google Scholar 

  • Ritter, H.: A spatial approach to feature linking. In: INNC (1990)

    Google Scholar 

  • Treisman, A., et al.: The binding problem. Current Opinion in Neurobiology 6(2), 171–178 (1996)

    Article  Google Scholar 

  • Wagemans, J., Elder, J., Kubovy, M., Palmer, S., Peterson, M., Singh, M., von der Heydt, R.: A century of gestalt psychology in visual perception: I. perceptual grouping and figure-ground organization. Psychological Bulletin 138(6) (2012)

    Google Scholar 

  • Wang, D.: Modeling global synchrony in the visual cortex by locally coupled neural oscillators. In: Eeckman, F.H. (ed.) Computation in Neurons and Neural Systems, pp. 109–114. Springer (1994)

    Google Scholar 

  • Wang, D., Terman, D.: Locally excitatory globally inhibitory oscillator networks. IEEE Transactions on Neural Networks 6(1), 283–286 (1995)

    Article  MathSciNet  Google Scholar 

  • Weng, S., Wersing, H., Steil, J., Ritter, H.: Learning lateral interactions for feature binding and sensory segmentation from prototypic basis interactions. IEEE Transactions on Neural Networks 17(4), 843–862 (2006)

    Article  Google Scholar 

  • Wersing, H.: Learning lateral interactions for feature binding and sensory segmentation. In: NIPS, pp. 1009–1016 (2001)

    Google Scholar 

  • Wersing, H., Steil, J., Ritter, H.: A competitive-layer model for feature binding and sensory segmentation. Neural Computation 13(2), 357–387 (2001)

    Article  MATH  Google Scholar 

  • Yu, G., Slotine, J.J.: Visual grouping by neural oscillator networks. IEEE Transactions on Neural Networks 20(12), 1871–1884 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Meier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Meier, M., Haschke, R., Ritter, H.J. (2015). Learning Gestalt Formations for Oscillator Networks. In: Koprinkova-Hristova, P., Mladenov, V., Kasabov, N. (eds) Artificial Neural Networks. Springer Series in Bio-/Neuroinformatics, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-09903-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09903-3_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09902-6

  • Online ISBN: 978-3-319-09903-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics