Skip to main content

The TeV Sky and Multiwavelength Astrophysics

  • Chapter
  • First Online:
Particles and Astrophysics

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 2868 Accesses

Abstract

TeV \(\upgamma \)-ray astronomy is outside the possibility of space-based experiments and can be at present studied only through ground-based experiments. However, because of the high background induced by CR showers, the large collection areas alone cannot provide adequate sensitivities for effective studies of cosmic \(\upgamma \)-rays. The capability to suppress the events induced by charged CRs was made possible with the advent of the Imaging Air Cherenkov Technique (IACT), Sect. 9.1 and with some dedicated air shower particle arrays, Sect. 9.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that a source with a flux equal to 1 % of the Crab is not detected in 100 min. The statistical significance of a signal excess depends on the background level, and this increases linearly with the observation time.

  2. 2.

    Quasar is also the contraction of quasi-stellar object because in optical images they have optical luminosities greater than that of their host galaxy. Some astronomers use the term quasi-stellar object (QSO) to indicate radio-quiet quasars, reserving that of quasars for radio-loud objects.

  3. 3.

    As an exercise, try to estimate the peak luminosity for the three considered objects using the redshift-distance relation.

  4. 4.

    As an exercise, demonstrate that the CMB contribution in Fig. 9.20 would be represented by a parabola with negative concavity and vertex at about \(5\times 10^{-13}\) erg cm\(^{-3}\) at \(E_\upgamma \sim 10^{-3}\) eV.

References

  • A. Abdo et al., (FERMI Coll.) The spectral energy distribution of fermi bright blazars. The Astrophys. J. 716, 30–70 (2010a)

    Google Scholar 

  • A.A. Abdo et al., FERMI Large area telescope observations of the Crab pulsar and nebula. The Astrophys. J. 708, 1254–1267 (2010b)

    Google Scholar 

  • A.A. Abdo et al., Fermi large area telescope observations of Markarian 421: the missing piece of its spectral energy distribution. The Astrophys. J. 736, 131 (2011)

    Google Scholar 

  • A.A. Abdo et al., (Fermi-LAT collaboration), Observations of the young supernova remnant RX J1713.7-3946 with the Fermi Large Area Telescope. The Astrophys. J. 734, 28 (2011)

    Google Scholar 

  • M. Ackermann et al., Detection of the characteristic pion-decay signature in supernova remnants. Science 339, 807 (2013)

    Google Scholar 

  • F. Aharonian et al., The Crab nebula and Pulsar between 500 GeV and 80 TeV: observations with the HEGRA Stereoscopic air Cerenkov telescopes. The Astrophys. J. 614, 897–913 (2004)

    Google Scholar 

  • F. Aharonian et al., An exceptional very high energy gamma-ray flare of PKS 2155–304. The Astrophys. J. 664, L71–L74 (2007a)

    Google Scholar 

  • F. Aharonian et al., Primary particle acceleration above 100 TeV in the shell-type supernova remnant RX J1713.7-3946 with deep HESS observations. Astron. Astrophys. 464, 235–243 (2007b)

    Google Scholar 

  • F. Aharonian, J. Buckley, T. Kifune, G. Sinnis, High energy astrophysics with ground-based gamma ray detectors. Rep. Prog. Phys. 71, 096901 (2008)

    Article  ADS  Google Scholar 

  • E. Aliu et al., Observation of pulsed gamma-rays above 25 GeV from the crab pulsar with MAGIC. Science 322, 1221 (2008)

    Google Scholar 

  • A. De Angelis, O. Mansutti, M. Persic, Very-high-energy gamma astrophysics. Riv. del Nuovo Cimento 31, 187 (2008). doi:10.1393/ncr/i2008-10032-2

  • M. Böttcher, Models for the spectral energy distributions and variability of blazars. in: Fermi Meets Jansky - AGN at Radio and Gamma-Rays, Eds. T. Savolainen, E. Ros, R.W. Porcas, J. A. Zensus, p. 41 (2010). Also arXiv:1006.5048

  • S. Carrigan et al., The H.E.S.S. Galactic Plane Survey—maps, source catalog and source population (2013). arXiv:1307.4690v3

  • J.D. Finke, S. Razzaque, C.D. Dermer, Modeling the extragalactic background light from stars and dust. The Astrophys. J. 712, 238–249 (2010)

    Article  ADS  Google Scholar 

  • S. Funk, OG2 Rapporteurs talk at ICRC (2011)

    Google Scholar 

  • S. Funk, The status of gamma-ray astronomy (2012). arXiv:1204.4529v1 [astro-ph.HE]

  • R.C. Gilmore et al., Semi-analytic modelling of the extragalactic background light and consequences for extragalactic gamma-ray spectra. Mon. Not. R. Astron. Soc. 422, 3189–3207 (2012)

    Google Scholar 

  • F. Giordano et al., Fermi large area telescope detection of the young supernova remnant tycho. The Astrophys. J. Lett. 744, L2 (2012)

    Google Scholar 

  • J.A. Hinton, W. Hofmann, Teraelectronvolt astronomy. Annu. Rev. Astron. Astrophys. 47, 523 (2009)

    Article  ADS  Google Scholar 

  • J. Holder, TeV gamma-ray astronomy: a summary. Astropart. Phys. 39–40, 61–75 (2012)

    Article  Google Scholar 

  • C.F. Kennel, F.V. Coroniti, Confinement of the Crab pulsar’s wind by its supernova remnant. The Astrophys. J. 283, 694–709 (1984)

    Article  ADS  Google Scholar 

  • M.S. Longair, High Energy Astrophysics, 3rd edn. (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  • P.L. Nolan et al., FERMI Large area telescope second source catalog. The Astrophys. J. Suppl. Ser. 199, 31 (2012)

    Google Scholar 

  • D. Paneque, Experimental gamma-ray astronomy. J. Phys.: Conf. Ser. 375, 052020 (2012)

    ADS  Google Scholar 

  • F. M. Rieger, E. de Ona-Wilhelmi, Felix A. Aharonian. TeV Astronomy (2013). arXiv:1302.5603

  • D.J. Thompson, L. Baldini, Y. Uchiyama, Cosmic ray studies with the fermi gamma-ray space telescope large area telescope. Astropart. Phys. 39–40, 22–32 (2012)

    Article  Google Scholar 

  • M. Urry, P. Padovani, Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 107 (1995) 803. Also arXiv:astro-ph/9506063

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Spurio .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Spurio, M. (2015). The TeV Sky and Multiwavelength Astrophysics. In: Particles and Astrophysics. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-319-08051-2_9

Download citation

Publish with us

Policies and ethics