Skip to main content

Diffusion of Cosmic Rays in the Galaxy

  • Chapter
  • First Online:
Particles and Astrophysics

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 2888 Accesses

Abstract

The observed spectra of CRs depend on two basic processes: the acceleration in the astrophysical sources and the propagation in the interstellar medium (ISM) of our Galaxy, described here. It is necessary to study first the latter (the propagation) in order to better understand the physics of acceleration mechanisms, subject of Chap. 6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Spallation” refers to inelastic nuclear reactions that occur when energetic particles interact with an atomic nucleus. Cosmic ray physicists usually refer to reactions induced by cosmic rays as “fragmentation”. For our practical purposes, the two words are synonymous.

References

  • R. Abbasi et al., Observation of Anisotropy in the Galactic Cosmic-Ray Arrival Directions at 400 TeV with IceCube. Astrophys J. 746, 33 (2012)

    Google Scholar 

  • P. Abreu et al., Search for first harmonic modulation in the right ascension distribution of cosmic rays detected at the Pierre Auger Observatory. Astroparticle Physics 34 (2011) 627–639. The results were updated at the ICRC 2013 (see: arxiv:1310.4620)

  • M. Aglietta et al., Evolution of the cosmic-ray anisotropy above 10\(^{14}\) eV. Astrophys. J. Lett. 692(2), L130–L133 (2009)

    Google Scholar 

  • M. Aguilar et al., (AMS-02 collaboration) AMS-02 provides a precise measure of cosmic rays. CERN Courier 53 (2013) 8, 23–26. Also: A. Oliva, ICRC 2013 (ID 1266)

    Google Scholar 

  • S. Bowman, Radiocarbon Dating (Interpreting the Past) University of California Press (1990). ISBN: 978-0520070370

    Google Scholar 

  • S. Braibant, G. Giacomelli, M. Spurio, Particles and Fundamental Interactions: Supplements (Springer, Problems and Solutions, 2012). ISBN 978-9400741355

    Google Scholar 

  • J. Candia, S. Mollerach, E. Roulet, Cosmic ray spectrum and anisotropies from the knee to the second knee. Jou. Cosmol. Astropart. Phys. 05, 003 (2003)

    Article  ADS  Google Scholar 

  • J.J. Engelmann et al., Charge composition and energy spectra of cosmic-ray nuclei for elements from Be to NI. Results from HEAO-3-C2. Astron. Astrophys. 233, 96–111 (1990)

    Google Scholar 

  • M. Garcia-Munoz, G.M. Mason, J.A. Simpson, The age of galactic cosmic rays derived. Astrophys. J. 217, 859–877 (1977)

    Article  ADS  Google Scholar 

  • G. Guillian et al., Observation of the anisotropy of 10 TeV primary cosmic ray nuclei flux with the super-Kamiokande-I detector. Phys. Rev. D 75, 062003 (2007)

    Google Scholar 

  • J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1999). ISBN 978-0471309321

    MATH  Google Scholar 

  • M. Kachelriess. Lecture Notes on High Energy Cosmic Rays (2008). arXiv:0801.4376

  • M.S. Longair, High Energy Astrophys., 3rd edn. (Cambridge University Press, Cambridge, 2011) ISBN: 978-0521756181

    Google Scholar 

  • V. Mardia, P. Jupp, Directional statistics, Wiley (1999). ISBN: 978-0471953333

    Google Scholar 

  • A. Obermeier et al., The boron-to-carbon abundance ratio and galactic propagation of cosmic radiation. Astrophys J 752, 69 (2012)

    Google Scholar 

  • V. Ptuskin, Propagation of galactic cosmic rays. Astropart. Phys. 39–40, 44–51 (2012)

    Article  Google Scholar 

  • J. Reimer Paula, INTCAL04 Terrestrial Radiocarbon Age Calibration, 0–26 Cal Kyr BP. Radiocarbon 46(3), 1029–1058 (2004)

    Google Scholar 

  • R. Silberberg, C.H. Tsao, Spallation processes and nuclear interaction products of cosmic rays. Phys. Rep. 191, 351–408 (1990)

    Google Scholar 

  • A.W. Strong, I.V. Moskalenko, Propagation of cosmic-ray nucleons in the Galaxy. Astrophys. J. 509, 212–228 (1998)

    Article  ADS  Google Scholar 

  • A.W. Strong, I.V. Moskalenko, V.S. Ptuskin, Cosmic-ray propagation and interactions in the galaxy. Annu. Rev. Nucl. Part. Sci. 57, 285–327 (2007)

    Article  ADS  Google Scholar 

  • N.E. Yanasak et al., Cosmic-ray time scales using radioactive clocks. Adv. Space Res. 27(4), 727–736 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Spurio .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Spurio, M. (2015). Diffusion of Cosmic Rays in the Galaxy. In: Particles and Astrophysics. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-319-08051-2_5

Download citation

Publish with us

Policies and ethics