Skip to main content

Microcosm and Macrocosm

  • Chapter
  • First Online:
Particles and Astrophysics

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 2840 Accesses

Abstract

Particles with their fundamental interactions, astrophysics, and cosmology have become closely related fields. The submicroscopic phenomena allow us to better understand the cosmic evolution, Sect. 13.1, and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The LSP is also denoted as \(\chi \). However, some of the following related discussions can be extended also to other no-SUSY WIMP candidates.

References

  • M.G. Aartsen et al., (IceCube collaboration). Search for dark matter annihilations in the Sun with the 79-string IceCube detector. Phys. Rev. Lett. 110, 131302 (2013)

    Google Scholar 

  • P.A.R. Ade et al. (Planck Collaboration). (2014), arXiv:1303.5062v1

  • S. Adrían-Martínez et al., (ANTARES Coll.) First results on dark matter annihilation in the Sun using the ANTARES neutrino telescope. JCAP11 (2013) 032. arXiv:1302.6516

  • E. Aprile, T. Doke, Liquid xenon detectors for particle physics and astrophysics. Rev. Mod. Phys. 82, 2053–2097 (2010)

    Article  ADS  Google Scholar 

  • P. Baratella et al. PPPC 4 DM\(\nu \): A poor particle physicist cookbook for neutrinos from DM annihilations in the sun. (2014), arXiv:1312.6408

  • L. Baudis, Direct dark matter detection: the next decade. Dark Universe 1, 94–108 (2012)

    Article  Google Scholar 

  • D. Bauer et al., Snowmass CF1 summary: WIMP dark matter direct detection. (2014), arXiv:1310.8327v2

  • K.G. Begeman, H I rotation curves of spiral galaxies. I - NGC 3198. Astron. Astrophys. 223, 47–60 (1989)

    ADS  Google Scholar 

  • J. Beringer et al. (Particle Data Group). The review of particle physics. Phys. Rev. D86 (2012) 010001. See http://pdg.lbl.gov/

  • G. Bertone, D. Hooper, J. Silk, Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005)

    Article  ADS  Google Scholar 

  • S. Braibant, G. Giacomelli, M. Spurio, Particle and Fundamental Interactions (Springer, Berlin, 2011). ISBN 978-9400724631

    Google Scholar 

  • S. Braibant, G. Giacomelli, M. Spurio, Particles and Fundamental Interactions: Supplements, Problems and Solutions (Springer, Berlin, 2012)

    Book  MATH  Google Scholar 

  • M. Cirelli, et al. PPPC 4 DM ID: A poor particle physicist cookbook for dark matter indirect detection. JCAP 1103 (2011) 051.

    Google Scholar 

  • A. Drukier, K. Freese, D. Spergel, Detecting cold dark matter candidates. Phys. Rev. D33, 3495–3508 (1986)

    ADS  Google Scholar 

  • J. Einasto. Dark Matter. (2014), arXiv:0901.0632

  • J.L. Feng, Dark matter candidates from particle physics and methods of detection. Annu. Rev. Astron. Astrophys. 48, 495–545 (2010)

    Article  ADS  Google Scholar 

  • R.J. Gaitskell, Direct detection of dark matter. Annu. Rev. Nucl. Part. Sci. 54, 315–359 (2004)

    Article  ADS  Google Scholar 

  • G. Giacomelli, Magnetic monopoles. La Rivista del Nuovo Cimento 7(12), 1 (1984)

    Article  ADS  Google Scholar 

  • M.W. Goodman, E. Witten, Detectability of certain dark matter candidates. Phys. Rev. D31, 3059 (1985)

    ADS  Google Scholar 

  • D. Hooper, E.A. Baltz, Strategies for determining the nature of dark matter. Annu. Rev. Nucl. Part. Sci. 58, 293–314 (2008)

    Article  ADS  Google Scholar 

  • W. Hu, S. Dodelson, Cosmic microwave background anisotropies. Ann. Rev. Astron. Astrophys. 40, 171–216 (2002)

    Article  ADS  Google Scholar 

  • G. Jungman, M. Kamionkowski, K. Griest, Supersymmetric dark matter. Phys. Rep. 267, 195–373 (1996)

    Article  ADS  Google Scholar 

  • J.F. Navarro, C.S. Frenk, S.D. White, The structure of cold dark matter halos. Astrophys. J. 462, 563 (1996)

    Article  ADS  Google Scholar 

  • Peng-Fei Yin et al., Pulsar interpretation for the AMS-02 result. Phys. Rev. D 88, 023001 (2013)

    Google Scholar 

  • D.H. Perkins, Proton decay experiments. Annu. Rev. Nucl. Part. Sci. 34, 1–50 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  • T.A. Porter, R.P. Johnson, P.W. Graham, Dark matter searches with astroparticle data. Annu. Rev. Astron. Astrophys. 49, 155–194 (2011)

    Article  ADS  Google Scholar 

  • S. Profumo. TASI 2012 Lectures on astrophysical probes of dark matter. (2014), arXiv:1301.0952

  • M. Roos. Dark Matter: The evidence from astronomy, astrophysics, and cosmology. (2010), arXiv:1001.0316

  • T. Saab. An introduction to dark matter direct detection dearches and techniques. (2012), arXiv:1203.2566

  • V. Trimble, Existence and nature of dark matter in the universe. Ann. Rev. Astron. Ap. 25, 425–472 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Spurio .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Spurio, M. (2015). Microcosm and Macrocosm. In: Particles and Astrophysics. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-319-08051-2_13

Download citation

Publish with us

Policies and ethics