Skip to main content

Connections Between Physics and Astrophysics of Neutrinos

  • Chapter
  • First Online:
Particles and Astrophysics

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 2851 Accesses

Abstract

Stellar evolution, the theory of how stars evolve, relies on observations on many stars with different masses, colors, ages, and chemical composition. Two of the principal successes of the stellar evolution theory are the prediction of the mass-luminosity relation in main sequence stars and the explanation of the Hertzsprung-Russell diagram. This is a scatter graph of absolute magnitude or luminosity of stars versus temperature (color). The energy of stars is provided by nuclear fusion reactions in their core, Sect. 12.1, and their evolution is strongly dependent upon their mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is usually called normal ordering or Normal Hierarchy. Another possible solution is the case with \(0<m_3 \ll m_1 < m_2\), which corresponds to an inverted ordering or Inverted Hierarchy. We do not consider these aspects of \(\nu \) physics.

References

  • J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III. Results for the 2002–2007 data-taking period. Phys. Rev. C 80, 015807 (2009)

    Google Scholar 

  • K. Abe et al., Solar neutrino results in Super-Kamiokande-III. Phys. Rev. D 83, 052010 (2011)

    Google Scholar 

  • F. Acero et al. (HESS Collab.), First detection of VHE gamma-rays from SN1006 by H.E.S.S. Astron. Astrophys. 516, A62 (2010)

    Google Scholar 

  • B. Aharmim et al., Electron energy spectra, fluxes, and day-night asymmetries of 8B solar neutrinos from the 391-day salt phase SNO data set. Phys. Rev. C 72, 055502 (2005)

    Google Scholar 

  • Q.R. Ahmad et al., Direct evidence for neutrino flavor tranformation from neutral-current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 89, 011301 (2002)

    Google Scholar 

  • M. Altmann et al., Complete results for five years of GNO solar neutrino observations. Phys. Lett. B 616, 174 (2005)

    Google Scholar 

  • V. Antonelli, L. Miramonti, C. Pe\(\tilde{n}\)a Garay, A. Serenelli, Solar neutrinos. Adv. High Energ. Phys. (2013) Article ID 351926. doi:10.1155/2013/351926

    Google Scholar 

  • P. Antonioli et al., SNEWS: the SuperNova Early Warning System. New. J. Phys. 6, 114 (2004)

    Google Scholar 

  • M. Asplund, N. Grevesse, A.J. Sauval, P. Scott, The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481 (2009)

    Article  ADS  Google Scholar 

  • H. Athar, M. Jezabek, O. Yasuda, Effects of neutrino mixing on high-energy cosmic neutrino flux. Phys. Rev. D62, 103007 (2000)

    ADS  Google Scholar 

  • J.N. Bachall, Neutrino Astrophysics (Cambridge University Press, Cambridge, 1989). ISBN: 978-0521379755. The Solar Standard Model is also described on the website: http://www.sns.ias.edu/jnb/

  • J. Beringer et al., (Particle Data Group). The review of particle physics. Section: 13. Neutrino mass, mixing, and oscillations. Phys. Rev. D86, 010001 (2012)

    Google Scholar 

  • H.A. Bethe, Supernova mechanisms. Rev. Mod. Phys. 62, 801 (1990)

    Article  ADS  Google Scholar 

  • S. Braibant, G. Giacomelli, M. Spurio, Particle and fundamental interactions (Springer, Berlin, 2011). ISBN 978-9400724631.

    Google Scholar 

  • S. Braibant, G. Giacomelli, M. Spurio, Particles and Fundamental Interactions: Supplements, Problems and Solutions (Springer, Dordrecht, 2012)

    Book  Google Scholar 

  • C. Broggini, D. Bemmerer, A. Guglielmetti, R. Menegazzo, LUNA: nuclear astrophysics deep underground. Annu. Rev. Nucl. Part. Sci. 60, 53–73 (2010)

    Article  ADS  Google Scholar 

  • F. Calaprice, C. Galbiati, A. Wright, A. Ianni, Results from the Borexino solar neutrino experiment. Annu. Rev. Nucl. Part. Sci. 62, 315–336 (2012)

    Article  ADS  Google Scholar 

  • G.L. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches. Phys. Rev. D86, 013012 (2012)

    Google Scholar 

  • Y. Fukuda et al., Solar neutrino data covering solar cycle 22. Phys. Rev. Lett. 77, 1683 (1996)

    Google Scholar 

  • J. Gava, J. Kneller, C. Volpe, G.C. McLaughlin, A dynamical collective calculation of supernova neutrino signals. Phys. Rev. Lett. 103, 071101 (2009)

    Article  ADS  Google Scholar 

  • W. Hampel et al., GALLEX solar neutrino observations: results for GALLEX IV. Phys. Lett. B 447, 127 (1999)

    Google Scholar 

  • W. Haxton, The scientific life of John Bahcall. Annu. Rev. Nucl. Part. Sci. 59, 1–20 (2009)

    Article  ADS  Google Scholar 

  • W.C. Haxton, R.G. Hamish Robertson, A.M. Serenelli, Solar neutrinos: status and prospects. Annu. Rev. Astron. Astrophys. 51, 21–61 (2013)

    Article  ADS  Google Scholar 

  • A. Hoeflich, E. Mueller, P. Hoeflich, Light curves of type IA supernova models with different explosion mechanisms. Astron. Astrophys. 270, 223–248 (1993)

    ADS  Google Scholar 

  • H.Th. Janka et al., Theory of core-collapse Supernovae. Phys. Rept. 442, 38 (2007)

    Google Scholar 

  • N. Jelley, A.B. McDonald, R.G.H. Robertson, The sudbury neutrino observatory. Annu. Rev. Nucl. Part. Sci. 59, 431–465 (2009)

    Article  ADS  Google Scholar 

  • R. Kippenhahn, A. Weigert, Stellar Structure and Evolution (Springer, Berlin, 1990)

    Book  MATH  Google Scholar 

  • M. Koshiba, Observational neutrino astrophysics. Phys. Rep. 220, 229–381 (1992)

    Article  ADS  Google Scholar 

  • K. Lande, The life of Raymond Davis, Jr. and the beginning of neutrino astronomy. Annu. Rev. Nucl. Part. Sci. 59, 21–39 (2009)

    Article  ADS  Google Scholar 

  • P. Lipari, Introduction to neutrino physics. 1st CERN—CLAF School of High-energy Physics, Itacuruca, Brazil, (2001), http://cds.cern.ch/record/677618/files/p115.pdf

  • L.A. Marschall, The Supernova Story. Princeton Science Library 1988. ISBN: 978-0691036335

    Google Scholar 

  • G. Raffelt, Particle Physics from Stars. Annu. Rev. Nucl. Part. Sci. 49, 163 (1999)

    Article  ADS  Google Scholar 

  • K. Scholberg, Supernova neutrino detection. Annu. Rev. Nucl. Part. Sci. 62, 81 (2012)

    Article  ADS  Google Scholar 

  • A.M. Serenelli, W.C. Haxton, C. Pena-Garay, Solar models with accretion. I. Application to the solar abundance problem. Astrophys. J. 743, 24 (2011)

    Article  ADS  Google Scholar 

  • M.B. Smy et al. (SK Collab.), Super-Kamiokande’s solar \(\nu \). Nucl. Phys. B Proc. Suppl. 49, 235–236 (2013)

    Google Scholar 

  • S.E. Woosley, A. Heger, T.A. Weaver, The evolution and explosion of massive stars. Rev. Mod. Phys. 74, 1015 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Spurio .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Spurio, M. (2015). Connections Between Physics and Astrophysics of Neutrinos. In: Particles and Astrophysics. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-319-08051-2_12

Download citation

Publish with us

Policies and ethics