Skip to main content

Homogeneous Semi-infinite Samples

  • Chapter
  • First Online:
The Quartz Crystal Microbalance in Soft Matter Research

Part of the book series: Soft and Biological Matter ((SOBIMA))

  • 2275 Accesses

Abstract

The load impedance of a homogeneous, semi-infinite medium in contact with the resonator surface is equal to the material’s shear-wave impedance, which leads to the Gordon-Kanazawa-Mason result. For Newtonian liquids the QCM determines the viscosity-density product. If the density is known independently, one can infer the viscosity. The Gordon-Kanazawa-Mason result can be extended to viscoelastic media, in which case the (complex) viscosity is often converted to the complex shear modulus at MHz frequencies. The formulation can be extended to cover nematic liquid crystals, colloidal dispersions, interfaces with shallow surface roughness, and samples, which touch the resonator in the center, only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nandi, N., Bhattacharyya, K., Bagchi, B.: Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems. Chem. Rev. 100(6), 2013–2045 (2000)

    Article  Google Scholar 

  2. Goubaidoulline, C., Reuber, J., Merz, F., Johannsmann, D.: Simultaneous determination of density and viscosity of liquids based on quartz-crystal resonators covered with nanoporous alumina. J. Appl. Phys. 98(1), 014305 (2005)

    Google Scholar 

  3. Schön, P., Michalek, R., Walder, L.: Liquid density response of a quartz crystal microbalance modified with mesoporous titanium dioxide. Anal. Chem. 71, 3305 (1999)

    Article  Google Scholar 

  4. Stockbridge, C.D.: Effects of gas pressure on quartz crystal microbalances. In: Behrndt, K.H. (ed.) Vacuum Microbalance Techniques, vol. 5. Plenum Press, New York (1966)

    Google Scholar 

  5. Jakoby, B., Beigelbeck, R., Keplinger, F., Lucklum, F., Niedermayer, A., Reichel, E.K., Riesch, C., Voglhuber-Brunnmaier, T., Weiss, B.: Miniaturized sensors for the viscosity and density of liquids-performance and issues. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 111–120 (2010)

    Article  Google Scholar 

  6. http://www.flucon.de/, Accessed 28 Mar 2013

  7. Jerome, B.: Surface effects and anchoring in liquid-crystals. Rep. Prog. Phys. 54(3), 391–451 (1991)

    Article  ADS  Google Scholar 

  8. Gupta, V.K., Skaife, J.J., Dubrovsky, T.B., Abbott, N.L.: Optical amplification of ligand-receptor binding using liquid crystals. Science 279(5359), 2077–2080 (1998)

    Article  ADS  Google Scholar 

  9. Domack, A., Johannsmann, D.: High frequency effective viscosities of nematic liquid crystals with tilted orientation. Appl. Phys. Lett. 80(25), 4750–4752 (2002)

    Article  ADS  Google Scholar 

  10. Muramatsu, H., Iwasaki, F.: Monitoring of the changes of dynamic viscoelastic properties of liquid crystals during the orientation with voltage pulses using a quartz crystal resonator. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 258, 153–162 (1995)

    Google Scholar 

  11. deGennes, J.P., Prost, J.: The Physics of Liquid Crystals. Oxford University Press, Oxford (1993) (Ch. 5.2.2)

    Google Scholar 

  12. Parodi, O.: Stress tensor for a nematic liquid crystal. J. Phys. 31(7), 581–584 (1970)

    Google Scholar 

  13. Kiry, F., Martinoty, P.: Ultrasonic investigation of anisotropic viscosities in a nematic liquid-crystal. J. Phys. 38(2), 153–157 (1977)

    Article  Google Scholar 

  14. Martinoty, P., Candau, S.: Determination of viscosity coefficients of a nematic liquid crystal using a shear waves reflectance technique. Mol. Cryst. Liq. Cryst. 14(3–4), 243 (1971)

    Article  Google Scholar 

  15. Berglin, M., Olsson, A., Elwing, H.: The interaction between model biomaterial coatings and nylon microparticles as measured with a quartz crystal microbalance with dissipation monitoring. Macromol. Biosci. 8(5), 410–416 (2008)

    Article  Google Scholar 

  16. Fatisson, J., Domingos, R.F., Wilkinson, K.J., Tufenkji, N.: Deposition of TiO2 nanoparticles onto silica measured using a quartz crystal microbalance with dissipation monitoring. Langmuir 25(11), 6062–6069 (2009)

    Article  Google Scholar 

  17. Olofsson, A.C., Hermansson, M., Elwing, H.: Use of a quartz crystal microbalance to investigate the antiadhesive potential of N-acetyl-L-cysteine. Appl. Environ. Microbiol. 71(5), 2705–2712 (2005)

    Article  Google Scholar 

  18. Molino, P.J., Hodson, O.A., Quinn, J.F., Wetherbee, R.: The quartz crystal microbalance: a new tool for the investigation of the bioadhesion of diatoms to surfaces of differing surface energies. Langmuir 24(13), 6730–6737 (2008)

    Article  Google Scholar 

  19. Poitras, C., Fatisson, J., Tufenkji, N.: Real-time microgravimetric quantification of Cryptosporidium parvum in the presence of potential interferents. Water Res. 43(10), 2631–2638 (2009)

    Article  Google Scholar 

  20. Russel, W.B., Schowalter, D.A.S., Schowalter, W.R.: Colloidal Dispersions. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  21. Buscall, R., Goodwin, J.W., Hawkins, M.W., Ottewill, R.H.: Viscoelastic properties of concentrated lattices 2 theoretical-analysis. J. Chem. Soc. Faraday Trans. I 78, 2889–2899 (1982)

    Article  Google Scholar 

  22. Bergenholtz, J., Willenbacher, N., Wagner, N.J., Morrison, B., van den Ende, D., Mellema, J.: Colloidal charge determination in concentrated liquid dispersions using torsional resonance oscillation. J. Colloid Interface Sci. 202(2), 430–440 (1998)

    Article  Google Scholar 

  23. Wagner, N.J.: The high-frequency shear modulus of colloidal suspensions and the effects of hydrodynamic interactions. J. Colloid Interface Sci. 161(1), 169–181 (1993)

    Article  Google Scholar 

  24. Huang, J.S., Varadaraj, R.: Colloid and interface science in the oil industry. Curr. Opin. Colloid Interface Sci. 1(4), 535–539 (1996)

    Article  Google Scholar 

  25. Bell, J., Kohler, T., Woermann, D.: Change of the resonance frequency of a quartz crystal microbalance in contact with an aqueous dispersion of solid particles. Berichte Der Bunsen-Gesellschaft-Phys. Chem. Chem. Phys. 101(6), 879–883 (1997)

    Article  Google Scholar 

  26. Lionberger, R.A., Russel, W.B.: High-frequency modulus of hard-sphere colloids. J. Rheol. 38(6), 1885–1908 (1994)

    Article  ADS  Google Scholar 

  27. Wagner, N.J.: The High-frequency shear modulus of colloidal suspensions and the effects of hydrodynamic interactions. J. Colloid Interface Sci. 161(1), 169–181 (1993)

    Article  Google Scholar 

  28. Kao, M.H., Yodh, A.G., Pine, D.J.: Observation of Brownian-motion on the time scale of hydrodynamic interactions. Phys. Rev. Lett. 70(2), 242–245 (1993)

    Article  ADS  Google Scholar 

  29. Atakhorrami, M., Mizuno, D., Koenderink, G.H., Liverpool, T.B., MacKintosh, F.C., Schmidt, C.F.: Short-time inertial response of viscoelastic fluids measured with Brownian motion and with active probes. Phys. Rev. E 77(6), 13 (2008)

    Article  Google Scholar 

  30. Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115(8), 3840–3861 (2001)

    Article  ADS  Google Scholar 

  31. Baumberger, T., Caroli, C., Ronsin, O.: Self-healing slip pulses along a gel/glass interface. Phys. Rev. Lett. 88(7), 075509 (2002)

    Article  ADS  Google Scholar 

  32. Shull, K.R.: Contact mechanics and the adhesion of soft solids. Mater. Sci. Eng. R 36(1), 1–45 (2002)

    Article  Google Scholar 

  33. Flanigan, C.M., Desai, M., Shull, K.R.: Contact mechanics studies with the quartz crystal microbalance. Langmuir 16(25), 9825–9829 (2000)

    Article  Google Scholar 

  34. Efimov, I., Hillman, A.R., Schultze, J.W.: Sensitivity variation of the electrochemical quartz crystal microbalance in response to energy trapping. Electrochim. Acta 51(12), 2572–2577 (2006)

    Article  Google Scholar 

  35. Herrscher, M., Ziegler, C., Johannsmann, D.: Shifts of frequency and bandwidth of quartz crystal resonators coated with samples of finite lateral size. J. Appl. Phys. 101(11), 114909 (2007)

    Article  ADS  Google Scholar 

  36. Martin, S.J., Frye, G.C., Ricco, A.J., Senturia, S.D.: Effect of surface-roughness on the response of thickness-shear mode resonators in liquids. Anal. Chem. 65(20), 2910–2922 (1993)

    Article  Google Scholar 

  37. Daikhin, L., Gileadi, E., Katz, G., Tsionsky, V., Urbakh, M., Zagidulin, D.: Influence of roughness on the admittance of the quartz crystal microbalance immersed in liquids. Anal. Chem. 74(3), 554–561 (2002)

    Article  Google Scholar 

  38. Bund, A.M., Schneider, M.: Characterization of the viscoelasticity and the surface roughness of electrochemically prepared conducting polymer films by impedance measurements at quartz crystals. J. Electrochem. Soc. 149, 331 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diethelm Johannsmann .

Glossary

Variable

Definition (Comments)

a T

Shift factor (Sect. 3.7)

A

(Effective) area of the resonator plate (Sect. 7.4)

c

Speed of (shear) sound (c̃ = (G̃/ρ)1/2)

d P

Interparticle distance (Sect. 9.3)

D

Diffusivity (Sect. 9.3, do not confuse with the dissipation factor (1/Q))

eff

As an index: effective, mostly used in the context of an effective medium

f

Frequency

f 0

Resonance frequency at the fundamental (f 0 = Z q /(2m q ) = Z q /(2ρ q d q ))

f r

Resonance frequency

inertia

An inertial force (Sect. 9.3)

\( \tilde{G} \)

Shear modulus

K A

A sensitivity factor (Sect. 9.4, taking care of an amplitude distribution)

h r

Characteristic vertical scale of roughness (Sect. 9.5)

Wavenumber (k̃ = ω/c̃)

liq

As an index: liquid

l r

Characteristic horizontal scale of roughness (Sect. 9.5)

M

Mass

n

Overtone order

p

Pressure (Sect. 9.5)

q

Wave vector (Sect. 9.5)

P

As an index: Particle

r S

A position on the resonator surface

R P

Particle radius

S

As an index: Surface

t

Time

û

(Tangential) displacement

Velocity

z

Spatial coordinate perpendicular to the surface

liq

Acoustic wave impedance of a liquid ( liq  = (iωρ liq η liq )1/2)

L

Load impedance

Z q

Acoustic wave impedance of AT-cut quartz (Z q  = 8.8 × 106 kg m−2s−1)

Γ

Imaginary part of a resonance frequency

δ

As a prefix: a small quantity (Fig. 9.5)

δ

Penetration depth of a shear wave (Newtonian liquids: δ = (2η liq /(ρ liq ω))1/2)

Δ

As a prefix: A shift induced by the presence of the sample

φ

Particle volume fraction

\( \tilde{\upeta }_{liq} \,\upeta_{liq} \)

Viscosity

ρ

Density

τ hyd

Hydrodynamic time scale (Sect. 9.3)

τ MR

Momentum relaxation time (Sect. 9.3)

ξ

Drag coefficient

ω

Angular frequency

ω c

A critical frequency, above which inertial effects are noticeable (Sect. 9.3)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johannsmann, D. (2015). Homogeneous Semi-infinite Samples. In: The Quartz Crystal Microbalance in Soft Matter Research. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-07836-6_9

Download citation

Publish with us

Policies and ethics