Skip to main content

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

The advanced QCMs provide information beyond gravimetry, but that is not to say that gravimetry was obsolete. Gravimetry is based on the Sauerbrey equation, derived in this chapter from the small load approximation. Strategies are discussed to improve the limit of detection. At least as important as sensitivity is specificity, meaning the ability to distinguish between different analytes. Specificity is achieved with receptor layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sauerbrey, G.: Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Physik 155(2), 206–222 (1959)

    Article  ADS  Google Scholar 

  2. Stockbridge, C.D.: Resonance frequency versus mass added to quartz crystals In: Behrndt, K (ed.) Vacuum Microbalance Techniques, vol. 5, 4th edn. Plenum Press, New York (1966)

    Google Scholar 

  3. Lu, C., Czanderna, A.W.: Applications of Piezoelectric Quartz Crystal Microbalances. Elsevier, Amsterdam (1984)

    Google Scholar 

  4. King, W.H.: Piezoelectric sorption detector. Anal. Chem. 36(9), 1735 (1964)

    Article  Google Scholar 

  5. Janata, J.: Principles of Chemical Sensors. Springer, New York (2009)

    Google Scholar 

  6. Cheng, C.I., Chang, Y.P., Chu, Y.H.: Biomolecular interactions and tools for their recognition: focus on the quartz crystal microbalance and its diverse surface chemistries and applications. Chem. Soc. Rev. 41(5), 1947–1971 (2012)

    Article  Google Scholar 

  7. Hanay, M.S., Kelber, S., Naik, A.K., Chi, D., Hentz, S., Bullard, E.C., Colinet, E., Duraffourg, L., Roukes, M.L.: Single-protein nanomechanical mass spectrometry in real time. Nat. Nanotechnol. 7(9), 602–608 (2012)

    Article  ADS  Google Scholar 

  8. van Noort, D., Rani, R., Mandenius, C.F.: Improving the sensitivity of a quartz crystal microbalance for biosensing by using porous gold. Mikrochim. Acta 136(1–2), 49–53 (2001)

    Article  Google Scholar 

  9. Grate, J.W.: Acoustic wave microsensor arrays for vapor sensing. Chem. Rev. 100(7), 2627–2647 (2000)

    Article  Google Scholar 

  10. Zimmermann, B., Lucklum, R., Hauptmann, P., Rabe, J., Büttgenbach, S.: Electrical characterisation of high-frequency thickness-shear-mode resonators by impedance analysis. Sens. Actuators B-Chemical 76(1–3), 47–57 (2001)

    Article  Google Scholar 

  11. Lin, Z.X., Yip, C.M., Joseph, I.S., Ward, M.D.: Operation of an ultrasensitive 30-Mhz quartz-crystal microbalance in liquids. Anal. Chem. 65(11), 1546–1551 (1993)

    Article  Google Scholar 

  12. Sota, H., Yoshimine, H., Whittier, R.F., Gotoh, M., Shinohara, Y., Hasegawa, Y., Okahata, Y.: A versatile planar QCM-based sensor design for nonlabeling biomolecule detection. Anal. Chem. 74(15), 3592–3598 (2002)

    Article  Google Scholar 

  13. http://www.initium2000.com/en/. Accessed 18 May 2013

  14. For an overview see Piazza, G., Felmetsger, V., Muralt, P., Olsson, R.H., Ruby, R.: Piezoelectric aluminum nitride thin films for microelectromechanical systems. MRS Bull. 37(11), 1051–1061 (2012)

    Google Scholar 

  15. Wingqvist, G.: AlN-based sputter-deposited shear mode thin film bulk acoustic resonator (FBAR) for biosensor applications—A review. Surf. Coat. Technol. 205(5), 1279–1286 (2010)

    Article  Google Scholar 

  16. Wingqvist, G., Bjurstrom, J., Liljeholm, L., Yantchev, V., Katardjiev, I.: Shear mode AlN thin film electro-acoustic resonant sensor operation in viscous media. Sens. Actuators B-Chemical 123(1), 466–473 (2007)

    Article  Google Scholar 

  17. Birch, J., Marriott, S.P.: Appraisal of the inverted-mesa at-cut quartz resonator for achieving low-inductance high-Q single-response crystal units. Electron. Lett. 15(20), 641–643 (1979)

    Article  Google Scholar 

  18. Kreutz, C., Lorgen, J., Graewe, B., Bargon, J., Yoshida, M., Fresco, Z.M., Frechet, J.M.J.: High frequency quartz micro balances: a promising path to enhanced sensitivity of gravimetric sensors. Sensors 6(4), 335–340 (2006)

    Article  Google Scholar 

  19. Zimmermann, B., Lucklum, R., Hauptmann, P., Rabe, J., Büttgenbach, S.: Electrical characterisation of high-frequency thickness-shear-mode resonators by impedance analysis. Sen. Actuators B-Chemical 76(1–3), 47–57 (2001)

    Article  Google Scholar 

  20. Kato, F., Ogi, H., Yanagida, T., Nishikawa, S., Hirao, M., Nishiyama, M.: Resonance acoustic microbalance with naked-embedded quartz (RAMNE-Q) biosensor fabricated by microelectromechanical-system process. Biosens. Bioelectron. 33(1), 139–145 (2012)

    Article  Google Scholar 

  21. Rock, F., Barsan, N., Weimar, U.: Electronic nose: current status and future trends. Chem. Rev. 108(2), 705–725 (2008)

    Article  Google Scholar 

  22. http://us.msasafety.com/CBRNE-Detectors/CBRNE-Detectors/HAZMATCAD%26reg%3B-and-HAZMATCAD%26reg%3B-Plus/p/000400000200001000. Accessed 11 May 2013

  23. Fanget, S., Hentz, S., Puget, P., Arcamone, J., Matheron, M., Colinet, E., Andreucci, P., Duraffourg, L., Myers, E., Roukes, M.L.: Gas sensors based on gravimetric detection-A review. Sens. Actuators B-Chemical 160(1), 804–821 (2011)

    Article  Google Scholar 

  24. Arlett, J.L., Myers, E.B., Roukes, M.L.: Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 6(4), 203–215 (2011)

    Article  ADS  Google Scholar 

  25. Bucking, W., Du, B., Turshatov, A., Konig, A.M., Reviakine, I., Bode, B., Johannsmann, D.: Quartz crystal microbalance based on torsional piezoelectric resonators. Rev. Sci. Instrum. 78(7), 074903 (2007)

    Article  ADS  Google Scholar 

  26. Homola, J.: Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377(3), 528–539 (2003)

    Article  Google Scholar 

  27. Cooper, M.A.: Label-free screening of bio-molecular interactions. Anal. Bioanal. Chem. 377(5), 834–842 (2003)

    Article  Google Scholar 

  28. Rich, R.L., Myszka, D.G.: Advances in surface plasmon resonance biosensor analysis. Curr. Opin. Biotechnol. 11(1), 54–61 (2000)

    Article  Google Scholar 

  29. Rothenhäusler, B., Knoll, W.: Surface-plasmon microscopy. Nature 332(6165), 615–617 (1988)

    Article  ADS  Google Scholar 

  30. Yeatman, E., Ash, E.A.: Surface-plasmon microscopy. Electron. Lett. 23(20), 1091–1092 (1987)

    Article  Google Scholar 

  31. Nelson, B.P., Grimsrud, T.E., Liles, M.R., Goodman, R.M., Corn, R.M.: Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal. Chem. 73(1), 1–7 (2001)

    Article  Google Scholar 

  32. http://www.gwcinstruments.com/gwcSPRimager.htm. Accessed 2 Jan 2014

  33. Brutschy, M., Lubczyk, D., Muellen, K., Waldvogel, S.R.: Surface pretreatment boosts the performance of supramolecular affinity materials on quartz crystal microbalances for sensor applications. Anal. Chem. 85(21), 10526–10530 (2013)

    Article  Google Scholar 

  34. Schramm, U., Roesky, C.E.O., Winter, S., Rechenbach, T., Boeker, P., Lammers, P.S., Weber, E., Bargon, J.: Temperature dependence of an ammonia sensor in humid air based on a cryptophane-coated quartz microbalance. Sens. Actuators B-Chemical 57(1–3), 233–237 (1999)

    Article  Google Scholar 

  35. Harris, D. C.: Gas chromatography. In: Quantitative Chemical Analysis, pp 675–712, 5th edn. W. H. Freeman and Company, New York (1999)

    Google Scholar 

  36. Lubczyk, D., Siering, C., Lorgen, J., Shifrina, Z.B., Mullen, M., Waldvogel, S.R.: Simple and sensitive online detection of triacetone triperoxide explosive. Sens. Actuators B-Chemical 143(2), 561–566 (2010)

    Article  Google Scholar 

  37. Goubaidoulline, I., Vidrich, G., Johannsmann, D.: Organic vapor sensing with ionic liquids entrapped in alumina nanopores on quartz crystal resonators. Anal. Chem. 77(2), 615–619 (2005)

    Article  Google Scholar 

  38. Schön, P., Michalek, R., Walder, L.: Liquid density response of a quartz crystal microbalance modified with mesoporous titanium dioxide. Anal. Chem. 71, 3305 (1999)

    Article  Google Scholar 

  39. Zellers, E.T., Batterman, S.A., Han, M.W., Patrash, S.J.: Optimal coating selection for the analysis of organic vapor mixtures with polymer-coated surface-acoustic-wave sensor arrays. Anal. Chem. 67(6), 1092–1106 (1995)

    Article  Google Scholar 

  40. Park, J., Groves, W.A., Zellers, E.T.: Vapor recognition with small arrays of polymer-coated microsensors. A comprehensive analysis. Anal. Chem. 71(17), 3877–3886 (1999)

    Article  Google Scholar 

  41. Hierlemann, A., Zellers, E.T., Ricco, A.J.: Use of linear salvation energy relationships for modeling responses from polymer-coated acoustic-wave vapor sensors. Anal. Chem. 73(14), 3458–3466 (2001)

    Article  Google Scholar 

  42. Lewis, P.R., Manginell, R.P., Adkins, D.R., Kottenstette, R.J., Wheeler, D.R., Sokolowski, S.S., Trudell, D.E., Byrnes, J.E., Okandan, M., Bauer, J.M., Manley, R.G., Frye-Mason, G.C.: Recent advancements in the gas-phase MicroChemLab. IEEE Sens. J. 6(3), 784–795 (2006)

    Article  Google Scholar 

  43. Speight, R.E., Cooper, M.A.: A survey of the 2010 quartz crystal microbalance literature. J. Mol. Recognit. 25(9), 451–473 (2012)

    Article  Google Scholar 

  44. Martin, S.J., Granstaff, V.E., Frye, G.C.: Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem. 63(20), 2272–2281 (1991)

    Article  Google Scholar 

  45. Plunkett, M.A., Wang, Z.H., Rutland, M.W., Johannsmann, D.: Adsorption of pNIPAM layers on hydrophobic gold surfaces, measured in situ by QCM and SPR. Langmuir 19(17), 6837–6844 (2003)

    Article  Google Scholar 

  46. Bingen, P., Wang, G., Steinmetz, N.F., Rodahl, M., Richter, R.P.: Solvation effects in the quartz crystal microbalance with dissipation monitoring response to biomolecular adsorption. A phenomenological approach. Anal. Chem. 80(23), 8880–8890 (2008)

    Article  Google Scholar 

  47. Muratsugu, M., Ohta, F., Miya, Y., Hosokawa, T., Kurosawa, S., Kamo, N., Ikeda, H.: Quartz-crystal microbalance for the detection of microgram quantities of human serum-albumin—relationship between the frequency change and the mass of protein adsorbed. Anal. Chem. 65(20), 2933–2937 (1993)

    Article  Google Scholar 

  48. Shons, A., Dorman, F., Najarian, J.: An immunospecific microbalance. J. Biomed. Mater. Res. 6, 565 (1972)

    Article  Google Scholar 

  49. Vaughan, R. D., Guilbault, G. G.: Piezoelectric immunosensors. In: Steinem, C., Janshoff, A. (eds.) Piezoelectric Sensors. Springer, Berlin (2007)

    Google Scholar 

  50. Ebato, H., Gentry, C.A., Herron, J.N., Muller, W., Okahata, Y., Ringsdorf, H., Suci, P.A.: Investigation of specific binding of antifluorescyl antibody and fab to fluorescein lipids in langmuir-blodgett deposited films using quartz-crystal microbalance methodology. Anal. Chem. 66(10), 1683–1689 (1994)

    Article  Google Scholar 

  51. Lee, S.-W., Kunitake, T.: Handbook of molecular imprinting: advanced sensor applications. Pan Stanford Publishing, Singapore (2012)

    Google Scholar 

  52. Suriyanarayanan, S., Cywinski, P.J., Moro, A.J., Mohr, G.J., Kutner, W.: Chemosensors based on molecularly imprinted polymers. In Mol. Imprinting 325, 165–265 (2012)

    Article  Google Scholar 

  53. Dickert, F.L., Tortschanoff, M., Bulst, W.E., Fischerauer, G.: Molecularly imprinted sensor layers for the detection of polycyclic aromatic hydrocarbons in water. Anal. Chem. 71(20), 4559–4563 (1999)

    Article  Google Scholar 

  54. Reddy, S.M., Phan, Q.T., El-Sharif, H., Govada, L., Stevenson, D., Chayen, N.E.: Protein crystallization and biosensor applications of hydrogel-based molecularly imprinted polymers. Biomacromolecules 13(12), 3959–3965 (2012)

    Article  Google Scholar 

  55. Cheng, C.I., Chang, Y.P., Chu, Y.H.: Biomolecular interactions and tools for their recognition: focus on the quartz crystal microbalance and its diverse surface chemistries and applications. Chem. Soc. Rev. 41(5), 1947–1971 (2012)

    Article  Google Scholar 

  56. Cabric, S., Sanchez, J., Johansson, U., Larsson, R., Nilsson, B., Korsgren, O., Magnusson, P.U.: Anchoring of vascular endothelial growth factor to surface-immobilized heparin on pancreatic islets: implications for stimulating islet angiogenesis. Tissue Eng. Part A 16(3), 961–970 (2010)

    Article  Google Scholar 

  57. Tai, D.F., Lin, C.Y., Wu, T.Z., Chen, L.K.: Recognition of dengue virus protein using epitope-mediated molecularly imprinted film. Anal. Chem. 77(16), 5140–5143 (2005)

    Article  Google Scholar 

  58. Pomorska, A., Shchukin, D., Hammond, R., Cooper, M.A., Grundmeier, G., Johannsmann, D.: Positive frequency shifts observed upon adsorbing micron-sized solid objects to a quartz crystal microbalance from the liquid phase. Anal. Chem. 82(6), 2237–2242 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diethelm Johannsmann .

Glossary

Variable

Definition (Comments)

C

Mass-sensitivity constant

d

Thickness of a layer

f

Frequency

f

As an index: film

r

Resonance frequency

f 0

Resonance frequency at the fundamental (f 0 = Z q /(2m q ) = Z q /(2ρ q d q ))

G q

Shear modulus of AT-cut quartz (G q  ≈ 29 × 109 Pa, often called µ q in the literature.)

m

Mass per unit area

n

Overtone order

q

As an index: quartz resonator

Q

Q-factor (Q = 1/D = f r /(2Γ))

ref

As an index: reference state of a crystal in the absence of a load

S

As an index: Surface

t

Time

û

(Tangential) displacement

Velocity (v̂ = iωû)

L

Load impedance

Z q

Acoustic wave impedance of AT-cut quartz (Z q  = 8.8 × 106 kg m−2 s−1)

Γ

Imaginary part of a resonance frequency (Half-bandwidth at half-height of a resonance)

δ

As a prefix: uncertainty, scatter

Δ

As a prefix: A shift induced by the presence of the sample

ε

A small quantity (in Taylor expansions)

ρ

Density

ρ q

Density of crystalline quartz (ρ q  = 2.65 g/cm3)

\( {\hat{\sigma }} \)

(Tangential) stress (also called traction when exerted at a surface)

ω

Angular frequency

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johannsmann, D. (2015). Gravimetric Sensing. In: The Quartz Crystal Microbalance in Soft Matter Research. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-07836-6_8

Download citation

Publish with us

Policies and ethics