Skip to main content

Energy Trapping and Its Consequences

  • Chapter
  • First Online:
The Quartz Crystal Microbalance in Soft Matter Research

Part of the book series: Soft and Biological Matter ((SOBIMA))

  • 2284 Accesses

Abstract

Most quartz resonators apply energy trapping. By giving the electrodes the shape of a keyhole, the acoustic thickness of the plate is made larger in the center than at the rim. Such a plate can be viewed as an acoustic cavity, where the surfaces are shaped such that they focus the acoustic energy to the center. Energy trapping has numerous consequences, among them the flexural contributions to the vibration pattern, which lead to the emission of compressional waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saleh, B.E.A., Teich, M.C.: Fundamentals of photonics. Wiley, New York (2007)

    Google Scholar 

  2. Shockley, W., Curran, D.E., Koneval, D.J.: Trapped-energy modes in quartz filter crystals. J. Acoust. Soc. Am. 41(4P2), 981–993(1967)

    Google Scholar 

  3. Bechmann, R.: Single response thickness-shear mode resonators using circular bevelled plates. J. Sci. Instrum. 29(3), 73–76 (1952)

    Article  ADS  Google Scholar 

  4. Josse, F., Lee, Y., Martin, S.J., Cernosek, R.W.: Analysis of the radial dependence of mass sensitivity for modified-electrode quartz crystal resonators. Anal. Chem. 70(2), 237–247 (1998)

    Article  Google Scholar 

  5. Mindlin, R.D.: Optimum sizes and shapes of electrodes for quartz resonators. J. Acoust. Soc. Am. 43(6), 1329–1331 (1968)

    Article  ADS  Google Scholar 

  6. Bechmann, R.: Phys. Rev. 100, 1060 (1958)

    Article  ADS  Google Scholar 

  7. Tiersten, H.F., Smythe, R.C.: Analysis of contoured crystal resonators operating in overtones of coupled thickness shear and thickness twist. J. Acoust. Soc. Am. 65(6), 1455–1460 (1979)

    Article  ADS  MATH  Google Scholar 

  8. Tiersten, H.F., Stevens, D.S.: An analysis of nonlinear resonance in contoured-quartz crystal resonators. J. Acoust. Soc. Am. 80(4), 1122–1132 (1986)

    Article  ADS  Google Scholar 

  9. Stevens, D.S., Tiersten, H.F.: An analysis of doubly rotated quartz resonators utilizing essentially thickness modes with transverse variation. J. Acoust. Soc. Am. 79(6), 1811–1826 (1986)

    Article  ADS  Google Scholar 

  10. Tiersten, H.F.: Linear Piezoelectric Plate Vibrations: Elements of the Linear Theory of Piezoelectricity and the Vibrations of Piezoelectric Plates. Springer, Heidelberg (1995)

    Google Scholar 

  11. Watanabe, Y., Shikama, Y., Goka, S., Sato, T., Sekimoto, H.: Mode shape measurement of piezoelectric resonators using image processing technique. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 40(5B), 3572–3574 (2001)

    Google Scholar 

  12. Watanabe, Y., Tominaga, T., Sato, T., Goka, S., Sekimoto, H.: Visualization of mode patterns of piezoelectric resonators using correlation filter. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 41(5B), 3313–3315 (2002)

    Google Scholar 

  13. Ishizaki, A.; Sekimoto, H.; Watanabe, Y.: Three-dimensional analysis of spurious vibrations of rectangular AT-cut quartz plates. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap 36(3A), 1194–1200 (1997)

    Google Scholar 

  14. Spencer, W.J.: Physical Acoustics, Principles and Methods. In: Mason, W.P. (ed.) Physical Acoustics, Principles, and Methods vol. 5, pp 111–161. Academic Press, New York (1968)

    Google Scholar 

  15. Haruta, K., Spencer, W.J.: Proc. Annu. Freq. Control Symp. 30, 92 (1966)

    Google Scholar 

  16. Bahadur, H., Parshad, R.: Acoustic vibrational modes in quartz crystals: their frequency, amplitude, and shape determination. In Mason, W.P. (ed.) Physical Acoustics, Principles and Methods vol. 16, pp. 37–171. Academic Press, New York (1982)

    Google Scholar 

  17. Sauerbrey, G.: Proc. Annu. Freq. Control Symp. 17, 63 (1967)

    Google Scholar 

  18. Goka, S., Okabe, K., Watanabe, Y., Sekimoto, H.: Multimode quartz crystal microbalance. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 39(5B), 3073–3075 (2000)

    Google Scholar 

  19. Iwata, H., Hirama, K.: Suppression of inharmonic modes using elliptical periphery electrodes in very high frequency fundamental AT-cut resonators. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 40(5B), 3668–3671 (2001)

    Google Scholar 

  20. Ma, T.F., Zhang, C., Jiang, X.N., Feng, G.P.: Thickness shear mode quartz crystal resonators with optimized elliptical electrodes. Chin. Phys. B 20(4), 047701 (2011)

    Google Scholar 

  21. Hess, C., Borgwarth, K., Heinze, J.: Integration of an electrochemical quartz crystal microbalance into a scanning electrochemical microscope for mechanistic studies of surface patterning reactions. Electrochim. Acta 45(22–23), 3725–3736 (2000)

    Article  Google Scholar 

  22. Edvardsson, M., Zhdanov, V.P., Hook, F.: Controlled radial distribution of nanoscale vesicles during binding to an oscillating QCM surface. Small 3(4), 585–589 (2007)

    Article  Google Scholar 

  23. König, R., Langhoff, A., Johannsmann, D.: Steady flows above a quartz crystal resonator driven at elevated amplitude. Phys. Rev. E 89(4), (2014)

    Google Scholar 

  24. Flanigan, C.M., Desai, M., Shull, K.R.: Contact mechanics studies with the quartz crystal microbalance. Langmuir 16(25), 9825–9829 (2000)

    Article  Google Scholar 

  25. Herrscher, M., Ziegler, C., Johannsmann, D.: Shifts of frequency and bandwidth of quartz crystal resonators coated with samples of finite lateral size. J. Appl. Phys. 101(11), 114909 (2007)

    Google Scholar 

  26. Martin, B.A., Hager, H.E.: Velocity profile on quartz crystals oscillating in liquids. J. Appl. Phys. 65(7), 2630–2635 (1989)

    Article  ADS  Google Scholar 

  27. Inoue, D., Machida, S., Taniguchi, J., Suzuki, M., Ishikawa, M., Miura, K.: Dynamical frictional force of nanoscale sliding. Phys. Rev. B 86(11), 4 (2012)

    Google Scholar 

  28. Johannsmann, D., Heim, L.O.: A simple equation predicting the amplitude of motion of quartz crystal resonators. J. Appl. Phys. 100(9), 094505 (2006)

    Google Scholar 

  29. Bottom, V.E.: Introduction to Quartz Crystal Unit Design. Van Nostrand Reinhold, New York (1982)

    Google Scholar 

  30. Borovsky, B., Mason, B.L., Krim, J.: Scanning tunneling microscope measurements of the amplitude of vibration of a quartz crystal oscillator. J. Appl. Phys. 88(7), 4017–4021 (2000)

    Article  ADS  Google Scholar 

  31. Spencer, W.J., Hunt, R.M.: Coupled thickness shear and flexure displacements in rectangular at quartz plates. J. Acoust. Soc. Am. 39(5P1), 929–935 (1966)

    Google Scholar 

  32. Tessier, L., Patat, F., Schmitt, N., Feuillard, G., Thompson, M.: Effect of the generation of compressional waves on the response of the thickness-shear mode acoustic-wave sensor in liquids. Anal. Chem. 66(21), 3569–3574 (1994)

    Article  Google Scholar 

  33. Lin, Z.X., Ward, M.D.: The role of longitudinal-waves in quartz-crystal microbalance applications in liquids. Anal. Chem. 67(4), 685–693 (1995)

    Article  Google Scholar 

  34. Schneider, T.W., Martin, S.J.: Influence of compressional wave generation on thickness-shear mode resonator response in a fluid. Anal. Chem. 67(18), 3324–3335 (1995)

    Article  Google Scholar 

  35. Friedt, J.M., Choi, K.H., Francis, L., Campitelli, A.: Simultaneous atomic force microscope and quartz crystal microbalance measurements: Interactions and displacement field of a quartz crystal microbalance. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 41(6A), 3974–3977 (2002)

    Google Scholar 

  36. Eggers, F., Funck, T.: Method for measurement of shear-wave impedance in the Mhz region for liquid samples of approximately 1 Ml. J. Phys. E-Sci. Instrum. 20(5), 523–530 (1987)

    Article  ADS  Google Scholar 

  37. http://www.comsol.com/model/download/177395/models.mems.thickness_shear_quartz_oscillator.pdf. Accessed 20 Feb 2014

  38. Reviakine, I., Morozov, A.N., Rossetti, F.F.: Effects of finite crystal size in the quartz crystal microbalance with dissipation measurement system: Implications for data analysis. J. Appl. Phys. 95(12), 7712–7716 (2004)

    Article  ADS  Google Scholar 

  39. Tiersten, H.F.: Perturbation-theory for linear electroelastic equations for small fields superposed on a bias. J. Acoust. Soc. Am. 64(3), 832–837 (1978)

    Article  ADS  MATH  Google Scholar 

  40. Yang, L., Vitchev, N., Yu, Z.P.: Modal analysis of practical quartz resonators using finite element method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(2), 292–298 (2010)

    Article  Google Scholar 

  41. Lerch, R.: Simulation of piezoelectric devices by 2-dimensional and 3-dimensional finite-elements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37(3), 233–247 (1990)

    Article  Google Scholar 

  42. Wang, J., Yu, J.D., Yong, Y.K., Imai, T.: A new theory for electroded piezoelectric plates and its finite element application for the forced vibrations of quartz crystal resonators. Int. J. Solids Struct. 37(40), 5653–5673 (2000)

    Article  MATH  Google Scholar 

  43. Wang, J., Yong, Y.K., Imai, T.: Finite element analysis of the piezoelectric vibrations of quartz plate resonators with higher-order plate theory. Int. J. Solids Struct. 36(15), 2303–2319 (1999)

    Article  MATH  Google Scholar 

  44. http://www.comsol.com/model/download/177395/models.mems.thickness_shear_quartz_oscillator.pdf. Accessed 20 Feb 2014

  45. Reichel, E.K., Riesch, C., Keplinger, F., Jakoby, B.: Modeling of the fluid-structure interaction in a fluidic sensor cell. Sens. Actuators A Phys. 156(1), 222–228 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diethelm Johannsmann .

Glossary

Variable

Definition (Comments)

A

Effective area of the resonator plate

\( \tilde{c} \)

Speed of propagation

C 1

Motional capacitance

\( \bar{C}_{1} \)

Motional capacitance of the 4-element circuit (Piezoelectric stiffening and the load have been taken into account)

\( \hat{\varvec{D}} \)

Electric displacement

d f

Film thickness

d q

Thickness of the resonator

d 26

Piezoelectric strain coefficient (d 26 = 3.1 × 10−12 m/V for AT-cut quartz)

e 26

Piezoelectric stress coefficient (e 26 = 9.65 × 10−2 C/m2 for AT-cut quartz)

f

Frequency

f

As an index: film

f n

Resonance frequency at overtone order n

f r

Resonance frequency

f 0

Resonance frequency at the fundamental (f 0 = Z q /(2m q ) = Z q /(2ρ q d q ))

G el

Electric conductance

G q

Shear modulus of AT-cut quartz (G q  ≈ 29 × 109 Pa)

\( \hat{I} \)

Electric current

k

Wavenumber

mot

As an index: motional

m f

Mass per unit area of a film

m q

Mass per unit area of the resonator (m q  = ρ q d q  = Z q /(2f 0))

n

Overtone order

PP

As an index: Parallel Plate

q

As an index: quartz resonator

Q

Quality factor

r

Distance to the axis of a beam

r

Position

ref

As an index: reference state of a crystal in the absence of a load

R 1

Motional resistance

S

As an index: Surface

\( \hat{u} \)

Displacement, more general, a field variable obeying the wave equation

\( \hat{u}_{c} \)

Amplitude in the center of a Gaussian amplitude distribution

\( \hat{u}_{E} \)

Slowly varying envelope

\( \hat{U} \)

Voltage

\( {\hat{\text{v}}} \)

Velocity (\( {\hat{\text{v}}} = {\text{i}}\upomega\hat{u} \))

z

Spatial coordinate along the surface normal

Z q

Acoustic wave impedance of AT-cut quartz (Z q  = 8.8 × 106 kg m−2 s−1)

Γ

Imaginary part of a resonance frequency

δ

Depth of penetration of a shear wave

δ L

Loss angle (tan(δ L ) = G′′/G′ = J′′/J′)

Δ

As a prefix: A shift induced by the presence of the sample

ε

A small quantity (In Taylor expansions)

φ

Azimuthal angle

ϕ

Factor converting between mechanical and electric quantities in the Mason circuit (ϕ = Ae 26/d q )

λ

Wavelength

σ G

Standard deviation of a Gaussian distribution

ρ

Density

ω

Angular frequency

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johannsmann, D. (2015). Energy Trapping and Its Consequences. In: The Quartz Crystal Microbalance in Soft Matter Research. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-07836-6_7

Download citation

Publish with us

Policies and ethics