Skip to main content

Modeling the Resonator as a Parallel Plate

  • Chapter
  • First Online:
The Quartz Crystal Microbalance in Soft Matter Research

Part of the book series: Soft and Biological Matter ((SOBIMA))

  • 2366 Accesses

Abstract

After an introduction to complex resonance frequencies, the chapter provides a thorough discussion of the acoustic impedance, the acoustic wave impedance, and other types of impedances with relevance to either the QCM itself or to related problems. The load impedance (the complex ratio of the amplitudes of periodic stress and periodic velocity, both evaluated at the resonator surface) is, what the QCM measures on a fundamental level. The description continues with three separate but equivalent ways of modeling the viscoelastic plate and its resonances. All three formulations have their benefits and drawbacks. Building on these models, it is proven that the complex frequency shift is proportional to the complex load impedance, which is the essence of the small load approximation. The load impedance can be averaged over area and time. The last section deals with samples, which themselves are small resonators with their own resonance frequency. In the presence of such “coupled resonances”, the frequency shift may be positive or negative, depending on whether the resonance frequency of the coupled resonator is smaller or larger than the resonance frequency of the crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Musil, R.: The Confusions of Young Törless. Penguin Classics (2001) (first published 1906)

    Google Scholar 

  2. Woan, G.: The Cambridge Handbook of Physics Formulas. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  3. Daikhin, L., Gileadi, E., Katz, G., Tsionsky, V., Urbakh, M., Zagidulin, D.: Influence of roughness on the admittance of the quartz crystal microbalance immersed in liquids. Anal. Chem. 74(3), 554–561 (2002)

    Article  Google Scholar 

  4. Rodahl, M., Hook, F., Krozer, A., Brzezinski, P., Kasemo, B.: Quartz-crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev. Sci. Instrum. 66(7), 3924–3930 (1995)

    Article  ADS  Google Scholar 

  5. Kochman, A., Krupka, A., Grissbach, J., Kutner, W., Gniewinska, B., Nafalski, L.: Design and performance of a new thin-layer radial-flow holder for a quartz crystal resonator of an electrochemical quartz crystal microbalance. Electroanalysis 18(22), 2168–2173 (2006)

    Article  Google Scholar 

  6. Reed, C.E., Kanazawa, K.K., Kaufman, J.H.: Physical Description of a Viscoelastically Loaded at-Cut Quartz Resonator. J. Appl. Phys. 68(5), 1993–2001 (1990)

    Article  ADS  Google Scholar 

  7. Voinova, M.V., Rodahl, M., Jonson, M., Kasemo, B.: Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Phys. Scr. 59(5), 391–396 (1999)

    Article  ADS  Google Scholar 

  8. Johannsmann, D., Mathauer, K., Wegner, G., Knoll, W.: Viscoelastic properties of thin-films probed with a quartz-crystal resonator. Phys. Rev. B 46(12), 7808–7815 (1992)

    Article  ADS  Google Scholar 

  9. Bandey, H.L., Martin, S.J., Cernosek, R.W., Hillman, A.R.: Modeling the responses of thickness-shear mode resonators under various loading conditions. Anal. Chem. 71(11), 2205–2214 (1999)

    Article  Google Scholar 

  10. Nakamoto, T., Moriizumi, T.: A theory of a quartz crystal microbalance based upon a mason equivalent-circuit. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 29(5), 963–969 (1990)

    Google Scholar 

  11. Mason, W.P.: Piezoelectric crystals and their applications to ultrasonics. Princeton, Van Nostrand (1948)

    Google Scholar 

  12. Kanazawa, K.K., Gordon, J.G.: Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 57(8), 1770–1771 (1985)

    Article  Google Scholar 

  13. http://en.wikibooks.org/wiki/Linear_Algebra. Accessed 14 Feb 2013

  14. Yeh, P.: Optical Waves in Layered Media. Wiley, New York (2005)

    Google Scholar 

  15. Katsidis, C.C., Siapkas, D.I.: General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl. Opt. 41(19), 3978–3987 (2002)

    Article  ADS  Google Scholar 

  16. Salomaki, M., Loikas, K., Kankare, J.: Effect of polyelectrolyte multilayers on the response of a quartz crystal microbalance. Anal. Chem. 75(21), 5895–5904 (2003)

    Article  Google Scholar 

  17. Mason, W.P., Baker, W.O., McSkimin, H.J., Heiss, J.H.: Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies. Phys. Rev. 75(6), 936–946 (1949)

    Article  ADS  Google Scholar 

  18. Alig, I., Lellinger, D., Sulimma, J., Tadjbakhsch, S.: Ultrasonic shear wave reflection method for measurements of the viscoelastic properties of polymer films. Rev. Sci. Instrum. 68(3), 1536–1542 (1997)

    Article  ADS  Google Scholar 

  19. Azzam, R.M.A., Bashara, N.M.: Ellipsometry and Polarized Light. Springer, New York (1987)

    Google Scholar 

  20. Lekner, J.: Theory of Reflection of Electromagnetic and Particle Waves. Springer, Dordrecht (1987)

    Google Scholar 

  21. Homola, J.: Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377(3), 528–539 (2003)

    Article  Google Scholar 

  22. Thurston, R.N.: Piezoelectrically excited vibrations. In: Truesdell, C. (ed.) Mechanics of Solids, vol. 4, p. 257. Springer, Heidelberg (1984)

    Google Scholar 

  23. Royer, D., Dieulesaint, E.: Elastic Waves in Solids II: Generation, Acousto-optic Interaction, Applications. Springer, New York (1999)

    Google Scholar 

  24. Ulaby, F.T.: Fundamentals of Applied Electromagnetics. Prentice Hall, Upper Saddle River (2010)

    Google Scholar 

  25. http://en.wikipedia.org/wiki/Robin_boundary_condition. Accessed 28 Dec 2013

  26. Granstaff, V.E., Martin, S.J.: Characterization of a thickness-shear mode quartz resonator with multiple nonpiezoelectric layers. J. Appl. Phys. 75(3), 1319–1329 (1994)

    Article  ADS  Google Scholar 

  27. Butterworth, S.: On electrically-maintained vibrations. Proc. Phys. Soc. London 27, 410 (1914)

    Article  Google Scholar 

  28. Dyke, K.V.: The piezo-electric resonator and its equivalent network. Proc. Inst. Radio Engin. 16(6), 742 (1928)

    Google Scholar 

  29. Calvo, E.J., Etchenique, R., Bartlett, P.N., Singhal, K., Santamaria, C.: Quartz crystal impedance studies at 10 MHz of viscoelastic liquids and films. Faraday Discuss. 107, 141–157 (1997)

    Article  ADS  Google Scholar 

  30. Rast, S., Wattinger, C., Gysin, U., Meyer, E.: The noise of cantilevers. Nanotechnology 11(3), 169–172 (2000)

    Article  ADS  Google Scholar 

  31. Lee, I., Lee, J.: Measurement uncertainties in resonant characteristics of MEMS resonators. J. Mech. Sci. Technol. 27(2), 491–500 (2013)

    Article  Google Scholar 

  32. http://www.am1.us/Local_Papers/U11625%20VIG-TUTORIAL.pdf. Accessed 18 June 2014

  33. http://txccrystal.com/term.html. Accessed 10 Aug 2013

  34. Horowitz, P., Hill, W.: The Art of Electronics. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  35. Gottlieb, I.M.: Practical Oscillator Handbook. Newnes, Oxford (1997)

    Google Scholar 

  36. Pechhold, W.: Zur Behandlung von Anregungs- und Störungsproblemen bei akustischen Resonatoren. Acustica 9, 48–56 (1959)

    Google Scholar 

  37. Arnau, A.: Piezoelectric Transducers and Applications. Springer, Heidelberg (2004)

    Book  Google Scholar 

  38. Johannsmann, D.: Viscoelastic, mechanical, and dielectric measurements on complex samples with the quartz crystal microbalance. Phys. Chem. Chem. Phys. 10(31), 4516–4534 (2008)

    Article  Google Scholar 

  39. Berg, S., Johannsmann, D.: Laterally coupled quartz resonators. Anal. Chem. 73(6), 1140–1145 (2001)

    Article  Google Scholar 

  40. Dybwad, G.L.: A sensitive new method for the determination of adhesive bonding between a particle and a substrate. J. Appl. Phys. 58(7), 2789–2790 (1985)

    Article  ADS  Google Scholar 

  41. Mason, W.P.: Electrical and mechanical analogies. Bell Syst. Tech. J. 20, 405–414 (1941)

    Article  Google Scholar 

  42. Meyers, M.A., Chawla, K.K.: Mechanical Behavior of Materials. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  43. http://en.wikibooks.org/wiki/Engineering_Acoustics/Electro-Mechanical_Analogies. Accessed 26 July 2012

  44. Gileadi, E.: Physical Electrochemistry: Fundamentals. A Textbook for Students of Science and Engineering, Techniques and Applications. Wiley, New York (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diethelm Johannsmann .

Glossary

Variable

Definition (Comments)

〈.〉

Average (over area or time, as indicated by an index)

A

(Effective) area of the resonator plate (see Sect. 7.4)

B el

Electric susceptance (B el  = Im(\( \tilde{Y}_{el} \)))

B off

Offset of the susceptance in a data trace of B el (f) (fit parameter in Eq. 4.5.30)

\( \tilde{c} \)

Speed of (shear) sound \( \left( \tilde{c} = \left( {\tilde{G}/\uprho} \right)^{ 1/ 2} \right) \)

C 1

Motional capacitance

\( \overline{C}_{ 1}\)

Motional capacitance of the four-element circuit (Piezoelectric stiffening and the load have been taken into account)

d

Thickness of a layer

d q

Thickness of the resonator (d q  = m q q  = Z q /(2ρ q f 0))

dC

Infinitesimal capacitance (Fig. 4.8a)

dL

Infinitesimal inductance (Fig. 4.8a)

D

Dissipation factor (D = 1/Q = 2Γ/f r )

E

Electric field

E tot

Total kinetic energy involved in a collision (see text above Eq. 4.2.16)

e 26

Piezoelectric stress coefficient (e 26 = 9.65 × 10−2 C/m2 for AT-cut quartz)

f

As an index: film

f

Frequency

Complex resonance frequency (\( \tilde{f} = f_{r} + {\text{i}}\Gamma \))

d

Damped resonance frequency (\( \tilde{f}_{d} = \left( {f_{r}^{2} -\Gamma ^{2} } \right)^{1/2} +\; {\text{i}}\Gamma \), also: “ringing frequency”)

r

Undamped resonance frequency

f s

Series resonance frequency (f r  = f s by definition in this book)

f 0

Resonance frequency at the fundamental

f 0 = Z q /(2m q ) = Z q /(2ρ q d q )

Might also have been called f 1; we follow the literature in calling it f 0

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{F} \)

Force

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{F}_{ex} \)

An external force driving a resonator

\( \tilde{G} \)

Shear modulus

G e

Electric conductance (G el  = Re(\( \tilde{Y}_{el} \)))

G max

Conductance on the peak of the resonance (fit parameter in Eq. 4.5.30)

G off

Offset of the conductance in a data trace of G el (f) (fit parameter in Eq. 4.5.30)

G q

Shear modulus of AT-cut quartz (G q  ≈ 29 × 109 Pa, often called µ q in the literature. G q  is the piezoelectrically stiffened modulus (Sect. 5.3))

\( \tilde{J} \)

Shear compliance

h

Half the thickness of a plate or layer, half the length of a cable

H

Magnetic field

Î

Electric current

\( \tilde{k} \)

Wavenumber (\( \tilde{k} = {\tilde{\upomega }/}\tilde{c} \))

k t

Piezoelectric coupling coefficient (k 2 t  = e 26/(ε q ε0 G q )2)

liq

As an index: liquid

\( \bar{L}_{j} \)

Transfer matrix for layer j (See Eq. 4.4.2)

L 1

Motional inductance

\( \bar{L}_{ 1} \)

Motional inductance of the four-element circuit (Piezoelectric stiffening and the load have been taken into account)

mot

As a index: motional (Applies to either the motional branch of the four-element circuit (Fig. 4.12b) or to the left-hand side of the transformer in the Mason-circuit (Fig. 4.10))

M

Mass

m q

Mass per unit area of the resonator (m q  = ρ q d q  = Z q /(2f 0))

M R

Mass of a Resonator

M red

Reduced mass of a coupled two-body system (1/M red  = 1/M A  + 1/M B )

n

Overtone order

n right , n left

Number of turns of a transformer (Eq. 4.5.7)

n, ñ

Refractive index (\( \tilde{n} = {\tilde{\upvarepsilon }}_{r}^{ 1/ 2} \))

OC

As an index: resonance condition of the unloaded plate under Open-Circuit conditions. With no current into the electrodes (more precisely, with vanishing electric displacement everywhere), piezoelectric stiffening is fully accounted for by using the piezoelectrically stiffened shear modulus

P

As an index: Particle (Sect. 4.6.3)

p tot

Total momentum involved in a collision (see text above Eq. 4.2.16)

q

As an index: quartz resonator

Q

Q-factor (Q = 1/D = f r /(2Γ))

ref

As an index: reference state of a crystal in the absence of a load

\( \tilde{r} \)

Amplitude reflection coefficient (reflectivity, for short)

Not to be confused with the power reflectance coefficient

Defined with regard to displacement (not stress)

\( \tilde{r}_{q,\,S} \)

Reflectivity evaluated at the resonator surface (see text above Eq. 4.4.6)

R

As an index: Resonator

R 1

Motional resistance

\( \overline{R}_{1}\)

Motional resistance of the four-element circuit (piezoelectric stiffening and the load have been taken into account)

\( \overline{S}_{i,\,j}\)

Transfer matrix the interface between layer i and j (see Eq. 4.4.2)

S

As an index: Surface

t

Time

Amplitude transmission coefficient

û

(Tangential) displacement

Û

Electric voltage

Velocity (v̂ = iωû)

w

Half-band full-width of a resonance (w = 2Γ)

x(t), (t)

Some time-harmonic function (real or complex) \(\begin{gathered} \left(x t \right) = x_{0} { \cos }(\upomega t + {\upvarphi }), \hfill \\ \tilde{x}\left( t \right) = \hat{x} { \exp }({\text{i}}\upomega\,t)\hfill \\ \end{gathered}\)

The function’s amplitude (\( \hat{x} = x_{0} { \cos }({\upvarphi }) - {\text{i}}x_{0} { \sin }({\upvarphi }) \))

z

Spatial coordinate perpendicular to the surface

el

Electric admittance (\( \tilde{Y}_{el} = 1/\tilde{Z}_{el} \))

Acoustic wave impedance (Table 4.1, mostly a shear-wave impedance)

\( \tilde{Z}_{ac} \)

Acoustic impedance (Table 4.1)

el

Electric impedance (Table 4.1)

EM

Electromagnetic wave impedance of plane waves (Table 4.1)

L

Load impedance (Table 4.1)

L,ijk

Load impedance in tensor form (Table 4.1)

Z LCR

Electric impedance of an LCR-circuit (Eq. 4.5.15)

liq

Acoustic wave impedance of a liquid (\( \tilde{Z}_{liq} = \left( {{\text{i}}\upomega \uprho _{liq}\upeta_{liq} } \right)^{ 1/ 2} \))

m

Mechanical impedance (Table 4.1)

Z P

Characteristic impedance of a particle coupled to the main resonator (Z P  = (κ P M P )1/2, Sect. 4.6.3)

Z q

Acoustic wave impedance of AT-cut quartz (Z q  = 8.8 × 106 kg m−2 s−1)

Z R

Characteristic impedance of a resonator (Z R  = (κ R M R )1/2, Sect. 4.6.3)

\( \tilde{Z}_{W,\,et} \)

Electric wave impedance (Table 4.1)

Z 11, Z 12

Elements of the transmission line in Fig. 4.18

γ D

Damping factor (has units of Hz, γ D  = 2πΓ)

Γ

Imaginary part of a resonance frequency

δf

A difference in frequency from the resonance frequency (Eq. 4.1.29)

δ L

Loss angle (tan(δ L ) = G″/G′ = J″/J′ often called tan(δ) in rheology)

δ q

Loss angle of the quartz plate (can be an effective parameter capturing losses other than the intrinsic viscous dissipation)

Δ

As a prefix: A shift induced by the presence of the sample

ε

A small quantity (In Taylor expansions)

\( {\tilde{\upvarepsilon }} \)

Dielectric permittivity (\( {\tilde{\upvarepsilon }} = {\tilde{\upvarepsilon }}_{r}\upvarepsilon_{0} \))

ε q

Dielectric constant of AT-cut quartz (ε q  = 4.54)

\( {\tilde{\upvarepsilon }}_{r}\)

Relative dielectric permittivity (Also: “dielectric constant”)

ε0

Dielectric permittivity of vacuum (ε0 = 8.854 × 10−12 C/(Vm))

φ

Phase

ϕ

Factor converting between mechanical and electric quantities in the Mason circuit (ϕ = Ae 26/d q )

\( {\tilde{\upeta }}\)

Viscosity (\( {\tilde{\upeta }} = \tilde{G}/\left( {{\text{i}}\upomega} \right) \))

η q

The “elastic viscosity” of AT-cut quartz, defined as η q  = G q ″/ω. η q is roughly independent of frequency (G q ″ is not). η q depends on the defect density

κ R

Spring constant of a Resonator

\({\tilde{\upmu}}\)

Magnetic permeability

μ0

Magnetic permeability of vacuum (μ0 = 4π × 10−7 Vs/Am)

\({\upmu}_r, \tilde{\upmu}_r\)

Relative magnetic permeability

ρ

Density

ρ q

Density of crystalline quartz (ρ q  = 2.65 g/cm3)

σ

(Tangential) stress

σ S

Tangential stress at the resonator surface (Also: “traction”)

ξ R

Drag coefficient of a Resonator (sometimes called “friction coefficient”, not to be confused with the friction coefficient in tribology)

ω

Angular frequency

\( \upomega_{0}\)

Undamped angular resonance frequency (ω0 = (κ R /M R )1/2)

ω LC

Undamped resonance frequency of an LCR-circuit (ω LC  = (LC)−1/2)

ω P

Particle resonance frequency of a coupled resonance (ω P  ≈ (κ P /M P )1/2)

\( {\tilde{\upomega }}_{r}\)

Angular resonance frequency (\( {\tilde{\upomega }}_{r} = 2\uppi\tilde{f}_{r} = 2\uppi \left( {f_{r} + {\text{i}}\Gamma } \right) \))

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johannsmann, D. (2015). Modeling the Resonator as a Parallel Plate. In: The Quartz Crystal Microbalance in Soft Matter Research. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-07836-6_4

Download citation

Publish with us

Policies and ethics