Skip to main content

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

Resonance frequency and resonance bandwidth can be interrogated in three different ways, which are based on oscillator circuits, impedance analysis, and ring down. The techniques are described and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnau, A.: Piezoelectric Transducers and Applications. Springer, Heidelberg (2004)

    Book  Google Scholar 

  2. Gottlieb, I.M.: Practical Oscillator Handbook. Newnes, Boston (1997)

    Google Scholar 

  3. http://txccrystal.com/term.html. Accessed 10 Aug 2013

  4. http://www.thinksrs.com/downloads/PDFs/Manuals/QCM200m.pdf. Accessed 14 Feb 2013

  5. Montagut, Y.J., Garcia, J.V., Jimenez, Y., March, C., Montoya, A., Arnau, A.: Frequency-shift versus phase-shift characterization of in-liquid quartz crystal microbalance applications. Rev. Sci. Instrum. 82(6), 064702 (2011)

    Google Scholar 

  6. Rubiola, E., Giordano, V.: On the 1/f frequency noise in ultra-stable quartz oscillators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(1), 15–22 (2007)

    Article  Google Scholar 

  7. http://cp.literature.agilent.com/litweb/pdf/5988-0728EN.pdf. Accessed 14 Feb 2013

  8. Beck, R., Pittermann, U., Weil, K.G.: Impedance Analysis of Quartz Oscillators, Contacted on One Side with a Liquid. Ber. Bunsen Phys. Chem. Chem. Phys. 92(11), 1363–1368 (1988)

    Article  Google Scholar 

  9. Zimmermann, B., Lucklum, R., Hauptmann, P., Rabe, J., Buttgenbach, S.: Electrical characterisation of high-frequency thickness-shear-mode resonators by impedance analysis. Sens. Actuators B Chem. 76(1–3), 47–57 (2001)

    Article  Google Scholar 

  10. Calvo, E.J., Etchenique, R., Bartlett, P.N., Singhal, K., Santamaria, C.: Quartz crystal impedance studies at 10 MHz of viscoelastic liquids and films. Faraday Discuss. 107, 141–157 (1997)

    Article  ADS  Google Scholar 

  11. Kankare, J., Loilkas, K., Salomaki, M.: Method for measuring the losses and loading of a quartz crystal microbalance. Anal. Chem. 78(6), 1875–1882 (2006)

    Article  Google Scholar 

  12. Auge, J., Dierks, K., Eichelbaum, F., Hauptmann, P.: High-speed multi-parameter data acquisition and web-based remote access to resonant sensors and sensor arrays. Sens. Actuators B Chem. 95(1–3), 32–38 (2003)

    Article  Google Scholar 

  13. http://n2pk.com/. Accessed 29 Nov 2013, http://www.makarov.ca/vna.htm. Accessed 29 Nov 2013

  14. http://sdr-kits.net/VNWA3_Description.html. Accessed 29 Nov 2013

  15. Arnau, A.: A review of interface electronic systems for AT-cut quartz crystal microbalance applications in liquids. Sensors 8(1), 370–411 (2008)

    Article  Google Scholar 

  16. Sittel, K., Rouse, P.E., Bailey, E.D.: Method for determining the viscoelastic properties of dilute polymer solutions at audio-frequencies. J. Appl. Phys. 25(10), 1312–1320 (1954)

    Article  ADS  Google Scholar 

  17. Hirao, M., Ogi, H., Fukuoka, H.: Resonance emat system for acoustoelastic stress measurement in sheet metals. Rev. Sci. Instrum. 64(11), 3198–3205 (1993)

    Article  ADS  Google Scholar 

  18. Rodahl, M., Hook, F., Krozer, A., Brzezinski, P., Kasemo, B.: Quartz-crystal microbalance setup for frequency and q-factor measurements in gaseous and liquid environments. Rev. Sci. Instrum. 66(7), 3924–3930 (1995)

    Article  ADS  Google Scholar 

  19. http://en.wikipedia.org/wiki/Impulse_excitation_technique. Accessed 14 Apr 2013

  20. Lucklum, R., Eichelbaum, F.: Interface circuits for QCM sensors. In: Steinem, C., Janshoff, A. (eds.) Piezoelectric Sensors, vol. 5, pp. 3–47. Springer, New York (2007)

    Google Scholar 

  21. Resa, P., Castro, P., Rodriguez-Lopez, J., Elvira, L.: Broadband spike excitation method for in-liquid QCM sensors. Sens. Actuators B Chem. 166, 275–280 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diethelm Johannsmann .

Glossary

Variable

Definition (Comments)

B el

Electrical susceptance

C 0

Parallel capacitance (see Sect. 4.5.3)

C 1

Motional capacitance (see Sect. 4.5.3)

el

As a subscript: electrical

f

Frequency

f osc

Oscillation frequency

f r

Resonance frequency

f s

Series resonance frequency (same as resonance frequency in this book)

G el

Electrical conductance

L 1

Motional inductance (see Sect. 4.5.3)

R 1

Motional resistance (see Sect. 4.5.3)

R L

Load resistance

t

Time

U ~

AC-voltage

Ỹ el

Electrical admittance (Ỹ el  = G el  + iB el )

Z̃ el

Electrical impedance (Z̃ el  = 1/Ỹ el )

Δ

As a prefix: a shift induced by the presence of a sample

Δf

Shift of resonance frequency (might have been called Δf r ; the index r was dropped for brevity)

ΔΓ

Shift of the half-bandwidth (might have been called ΔΓ r ; the index r was dropped for brevity)

Γ

Half-bandwidth (2πΓ: decay rate in a ring-down experiment)

ω

Angular frequency

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johannsmann, D. (2015). Methods of Read-Out. In: The Quartz Crystal Microbalance in Soft Matter Research. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-07836-6_2

Download citation

Publish with us

Policies and ethics