Skip to main content

Part of the book series: Soft and Biological Matter ((SOBIMA))

  • 2261 Accesses

Abstract

The QCM is often combined with other techniques of interface analysis. In some cases, doing that in situ is straight-forward. An example is the electrochemical QCM (EQCM). The combination with optical reflectometry is particularly interesting because the data analysis proceeds along similar lines, but still often leads to an effective optical thickness, which is lower than the Sauerbrey thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A mantra of the book is “Measure a frequency if you can”. There is a corresponding wisdom in astronomy (and even optics) which says: “Measure an angle if you can”. The positions of the stars count as angles and so does their color because color turns into an angle after a diffraction grating. The apparent brightness of a star cannot be turned into an angle and the measurement of a star’s distance therefore is a difficult matter. It is about as difficult has measuring a resonator’s effective area (proportional to the peak conductance). Of course the apparent brightness can be measured, but it cannot be measured with the same ease and precision as the star’s position in the sky and its color. Now to SPR spectroscopy: Film thickness turns into an angle (the coupling angle) when probed with an SPR spectrometer. SPR spectroscopy is a scheme to turn the parameter of interest into an angle.

References

  1. Bund, A., Schwitzgebel, G.: Investigations on metal depositions and dissolutions with an improved EQCMB based on quartz crystal impedance measurements. Electrochim. Acta 45(22–23), 3703–3710 (2000)

    Article  Google Scholar 

  2. Nomura, T., Okuhara, M.: Frequency shifts of piezoelectric quartz crystals immersed in organic liquids. Anal. Chim. Acta 142, 281–284 (1982)

    Google Scholar 

  3. Nomura, T., Hattori, O.: Determination of micromolar concentrations of cyanide in solution with a piezoelectric detector. Anal. Chim. Acta 115, 323–326 (1980)

    Google Scholar 

  4. Buttry, D.A., Ward, M.D.: Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem. Rev. 92(6), 1355–1379 (1992)

    Article  Google Scholar 

  5. Schumacher, R.: The quartz microbalance—a novel-approach to the insitu investigation of interfacial phenomena at the solid liquid junction. Angew. Chem. Int Ed. Engl. 29(4), 329–343 (1990)

    Article  Google Scholar 

  6. Marx, KA.: The quartz crystal microbalance and the electrochemical QCM: applications to studies of thin polymer films, electron transfer systems, biological macromolecules, biosensors, and cells. In: Janshoff, A., Steinem, C. (eds.) Piezolelectric Sensors, pp. 371–424. Springer, Berlin (2007)

    Google Scholar 

  7. Daikhin, L.; Tsionsky, V.; Gileadi, E.; Urbakh, M.: Looking at the metal/solution interface with the electrochemical quartz crystal microbalance: theory and experiment. In: Bard, A. J., Rubinstein, I., (eds.) Electroanalytical Chemistry: A Series of Advances, pp. 1–99. Marcel Dekker Inc, New York (2003)

    Google Scholar 

  8. Doblhofer, K., Weil, K.G.: Application of the quartz microbalance in electrochemistry. Bunsen Mag. 9, 162 (2007)

    Google Scholar 

  9. Hillman, A.R.: The EQCM: electrogravimetry with a light touch. J. Solid State Electrochem. 15(7–8), 1647–1660

    Google Scholar 

  10. Kochman, A., Krupka, A., Grissbach, J., Kutner, W., Gniewinska, B., Nafalski, L.: Design and performance of a new thin-layer radial-flow holder for a quartz crystal resonator of an electrochemical quartz crystal microbalance. Electroanalysis 18(22), 2168–2173 (2006)

    Article  Google Scholar 

  11. Tsionsky, V., Daikhin, L., Gileadi, E.: Response of the electrochemical quartz crystal microbalance for gold electrodes in the double-layer region. J. Electrochem. Soc. 143(7), 2240–2245 (1996)

    Article  Google Scholar 

  12. http://www.thinksrs.com/downloads/PDFs/Manuals/QCM200m.pdf. Accessed 14 Feb 2013

  13. http://www.gamry.com/assets/Uploads/eQCM-Calibration-of-an-Au-coated-Quartz-Crystal-AppNote.pdf. Accessed 6 Apr 2103

  14. Bruckenstein, S., Shay, M.: Experimental aspects of use of the quartz crystal microbalance in solution. Electrochim. Acta 30(10), 1295–1300 (1985)

    Article  Google Scholar 

  15. Hillman, A.R., Efimov, I., Ryder, K.S.: Time-scale- and temperature-dependent mechanical properties of viscoelastic poly(3,4-ethylenedioxythlophene) films. J. Am. Chem. Soc. 127(47), 16611–16620 (2005)

    Article  Google Scholar 

  16. Wudy, F., Multerer, M., Stock, C., Schmeer, G., Gores, H.J.: Rapid impedance scanning QCM for electrochemical applications based on miniaturized hardware and high-performance curve fitting. Electrochim. Acta 53(22), 6568–6574 (2008)

    Article  Google Scholar 

  17. Wickman, B., Gronbeck, H., Hanarp, P., Kasemo, B.: Corrosion induced degradation of Pt/C model electrodes measured with electrochemical quartz crystal microbalance. J. Electrochem. Soc. 157(4), B592–B598 (2010)

    Article  Google Scholar 

  18. Düwel, M.: Diploma thesis, Clausthal University of Technology (2007)

    Google Scholar 

  19. Compton, R.G., Eklund, J.C., Marken, F.: Sonoelectrochemical processes: a review. Electroanalysis 9(7), 509–522 (1997)

    Article  Google Scholar 

  20. Schneider, O., Matic, S., Argirusis, C.: Application of the electrochemical quartz crystal microbalance technique to copper sonoelectrochemistry—part 1. Sulfate-based electrolytes. Electrochim. Acta 53(17), 5485–5495 (2008)

    Article  Google Scholar 

  21. Domack, A., Prucker, O., Ruhe, J., Johannsmann, D.: Swelling of a polymer brush probed with a quartz crystal resonator. Phys. Rev. E 56(1), 680–689 (1997)

    Article  ADS  Google Scholar 

  22. Plunkett, M.A., Wang, Z.H., Rutland, M.W., Johannsmann, D.: Adsorption of pNIPAM layers on hydrophobic gold surfaces, measured in situ by QCM and SPR. Langmuir 19(17), 6837–6844 (2003)

    Article  Google Scholar 

  23. Bingen, P., Wang, G., Steinmetz, N.F., Rodahl, M., Richter, R.P.: Solvation effects in the quartz crystal microbalance with dissipation monitoring response to biomolecular adsorption. A phenomenological approach. Anal. Chem. 80(23), 8880–8890 (2008)

    Article  Google Scholar 

  24. Wang, Z.H., Kuckling, D., Johannsmann, D.: Temperature-induced swelling and de-swelling of thin poly(N-isopropylacrylamide) gels in water: combined acoustic and optical measurements. Soft Mater. 1(3), 353–364 (2003)

    Article  Google Scholar 

  25. Wang, G., Rodahl, M., Edvardsson, M., Svedhem, S., Ohlsson, G., Hook, F., Kasemo, B.: A combined reflectometry and quartz crystal microbalance with dissipation setup for surface interaction studies. Rev. Sci. Instrum. 79(7), 075107 (2008)

    Google Scholar 

  26. Edvardsson, M., Svedhem, S., Wang, G., Richter, R., Rodahl, M., Kasemo, B.: QCM-D and reflectometry instrument: applications to supported lipid structures and their biomolecular interactions. Anal. Chem. 81(1), 349–361 (2009)

    Article  Google Scholar 

  27. Azzam, R.M.A., Bashara, N.M.: Ellipsometry and Polarized Light. Springer, New York (1987)

    Google Scholar 

  28. Lekner, J.: Theory of Reflection of Electromagnetic and Particle Waves. Springer, New York (1987)

    Google Scholar 

  29. Homola, J.: Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377(3), 528–539 (2003)

    Article  Google Scholar 

  30. Bodvik, R., Macakova, L., Karlson, L., Thormann, E., Claesson, P.: Temperature-dependent competition between adsorption and aggregation of a cellulose ether-simultaneous use of optical and acoustical techniques for investigating surface properties. Langmuir 28(25), 9515–9525 (2012)

    Article  Google Scholar 

  31. Tiefenthaler, K., Lukosz, W.: Sensitivity of grating couplers as integrated-optical chemical sensors. J. Opt. Soc. Am. B Opt. Phys. 6(2), 209–220 (1989)

    Article  ADS  Google Scholar 

  32. http://www.owls-sensors.com/. Accessed 13 June 2013

  33. Laschitsch, A., Menges, B., Johannsmann, D.: Simultaneous determination of optical and acoustic thicknesses of protein layers using surface plasmon resonance spectroscopy and quartz crystal microweighing. Appl. Phys. Lett. 77(14), 2252–2254 (2000)

    Article  ADS  Google Scholar 

  34. Bailey, L.E., Kambhampati, D., Kanazawa, K.K., Knoll, W., Frank, C.W.: Using surface plasmon resonance and the quartz crystal microbalance to monitor in situ the interfacial behavior of thin organic films. Langmuir 18(2), 479–489 (2002)

    Article  Google Scholar 

  35. Zong, Y., Xu, F., Su, X.D., Knoll, W.: Quartz crystal microbalance with integrated surface plasmon grating coupler. Anal. Chem. 80(13), 5246–5250 (2008)

    Article  Google Scholar 

  36. Worgull, M.: Hot Embossing: Theory and Technology of Microreplication. Elsevier, Amsterdam (2008)

    Google Scholar 

  37. Francis, L.A., Friedt, J.M., Zhou, C., Bertrand, P.: In situ evaluation of density, viscosity, and thickness of adsorbed soft layers by combined surface acoustic wave and surface plasmon resonance. Anal. Chem. 78(12), 4200–4209 (2006)

    Article  Google Scholar 

  38. Kretschmann, E.: Determination of optical constants of metals by excitation of surface plasmons. Zeitschrift Fur Physik 241(4), 313 (1971)

    Google Scholar 

  39. Pockrand, I.: Surface plasma-oscillations at silver surfaces with thin transparent and absorbing coatings. Surf. Sci. 72(3), 577–588 (1978)

    Article  ADS  Google Scholar 

  40. Lekner, J.: Invariant formulation of the reflection of long waves by interfaces. Phys. A 128(1–2), 229–252 (1984)

    Article  Google Scholar 

  41. Carton, I., Brisson, A.R., Richter, R.P.: Label-free detection of clustering of membrane-bound proteins. Anal. Chem. 82(22), 9275–9281 (2010)

    Article  Google Scholar 

  42. Friedt, J.M., Choi, K.H., Frederix, F., Campitelli, A.: Simultaneous AFM and QCM measurements—methodology validation using electrodeposition. J. Electrochem. Soc. 150(10), H229–H234 (2003)

    Article  Google Scholar 

  43. Bund, A., Schneider, O., Dehnke, V.: Combining AFM and EQCM for the in situ investigation of surface roughness effects during electrochemical metal depositions. Phys. Chem. Chem. Phys. 4(15), 3552–3554 (2002)

    Article  Google Scholar 

  44. Hayden, O., Bindeus, R., Dickert, F.L.: Combining atomic force microscope and quartz crystal microbalance studies for cell detection. Meas. Sci. Technol. 14(11), 1876–1881 (2003)

    Article  ADS  Google Scholar 

  45. Kim, J.M., Chang, S.M., Muramatsu, H.: Scanning localized viscoelastic image using a quartz crystal resonator combined with an atomic force microscopy. Appl. Phys. Lett. 74(3), 466–468 (1999)

    Article  ADS  Google Scholar 

  46. Sasaki, A., Katsumata, A., Iwata, F., Aoyama, H.: Scanning shearing-stress microscope. Appl. Phys. Lett. 64(1), 124–125 (1994)

    Article  ADS  Google Scholar 

  47. Sasaki, A., Katsumata, A., Iwata, F., Aoyama, H.: Scanning shearing-stress microscopy of gold thin-films. Jpn. J. Appl. Phys. Part 2 Lett. 33(4A), L547–L549 (1994)

    Google Scholar 

  48. Yamada, R., Ye, S., Uosaki, K.: Novel scanning probe microscope for local elasticity measurement. Jpn. J. Appl. Phys. Part 2 Lett. 35(7A), L846–L848 (1996)

    Google Scholar 

  49. Borovsky, B., Krim, J., Syed Asif, S.A., Wahl, K.J.: Measuring nanomechanical properties of a dynamic contact using an indenter probe and quartz crystal microbalance. J. Appl. Phys. 90(12), 6391–6396 (2001)

    Article  ADS  Google Scholar 

  50. Friedt, J.M., Choi, K.H., Francis, L., Campitelli, A.: Simultaneous atomic force microscope and quartz crystal microbalance measurements: Interactions and displacement field of a quartz crystal microbalance. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 41(6A), 3974–3977 (2002)

    Google Scholar 

  51. Lubben, J.F., Johannsmann, D.: Nanoscale high-frequency contact mechanics using an AFM tip and a quartz crystal resonator. Langmuir 20(9), 3698–3703 (2004)

    Article  Google Scholar 

  52. Inoue, D., Machida, S., Taniguchi, J., Suzuki, M., Ishikawa, M., Miura, K.: Dynamical frictional force of nanoscale sliding. Phys. Rev. B 86(11), 4 (2012)

    Google Scholar 

  53. Scherer, V., Arnold, W., Bhushan, B.: Lateral force microscopy using acoustic friction force microscopy. Surf. Interface Anal. 27(5–6), 578–587 (1999)

    Article  Google Scholar 

  54. Krotil, H.U., Weilandt, E., Stifter, T., Marti, O., Hild, S.: Dynamic friction force measurement with the scanning force microscope. Surf. Interface Anal. 27(5–6), 341–347 (1999)

    Article  Google Scholar 

  55. Jersch, J., Maletzky, T., Fuchs, H.: Interface circuits for quartz crystal sensors in scanning probe microscopy applications. Rev. Sci. Instrum. 77(8), 083701 (2006)

    Google Scholar 

  56. Günther, P., Fischer, U., Dransfeld, K.: Scanning near-field acoustic microscopy. Appl. Phys. B Photophys. Laser Chem. 48(1), 89–92 (1989)

    Article  ADS  Google Scholar 

  57. http://www.specs.de/cms/front_content.php?idcat=246. Accessed 3 Mar 2014

  58. Giessibl, F.J.: A direct method to calculate tip-sample forces from frequency shifts in frequency-modulation atomic force microscopy. Appl. Phys. Lett. 78(1), 123–125 (2001)

    Article  ADS  Google Scholar 

  59. Hölscher, H., Schwarz, U.D., Wiesendanger, R.: Calculation of the frequency shift in dynamic force microscopy. Appl. Surf. Sci. 140(3–4), 344–351 (1999)

    Article  ADS  Google Scholar 

  60. Israelachvili, J.N.: Intermolecular and Surface Forces. Academic Press, London (2011)

    Google Scholar 

  61. Berg, S., Ruths, M., Johannsmann, D.: Quartz crystal resonators with atomically smooth surfaces for use in contact mechanics. Rev. Sci. Instrum. 74(8), 3845–3852 (2003)

    Article  ADS  Google Scholar 

  62. Berg, S., Ruths, M., Johannsmann, D.: High-frequency measurements of interfacial friction using quartz crystal resonators integrated into a surface forces apparatus. Phys. Rev. E 65(2), 026119 (2002)

    Google Scholar 

  63. Xu, B., Wang, H.D., Wang, Y., Zhu, G.Y., Li, Z., Wang, E.K.: A mica-modified quartz resonator for a quartz crystal microbalance study. Anal. Sci. 16(10), 1061–1063 (2000)

    Article  Google Scholar 

  64. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and contact of elastic solids. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci. 324(1558), 301 (1971)

    Google Scholar 

  65. Flanigan, C.M., Desai, M., Shull, K.R.: Contact mechanics studies with the quartz crystal microbalance. Langmuir 16(25), 9825–9829 (2000)

    Article  Google Scholar 

  66. Zhang, J., Hu, J.Q., Zhu, F.R., Gong, H., O’Shea, S.J.: ITO thin films coated quartz crystal microbalance as gas sensor for NO detection. Sens. Actuators B Chem. 87(1), 159–167 (2002)

    Article  Google Scholar 

  67. ITO coated resonator crystals are available from microvacuum: http://www.microvacuum.com/

  68. Larsson, E.M., Edvardsson, M.E.M., Langhammer, C., Zoric, I., Kasemo, B.: A combined nanoplasmonic and electrodeless quartz crystal microbalance setup. Rev. Sci. Instrum. 80(12), 10 (2009)

    Google Scholar 

  69. http://www.masscal.com/library/EarlyQCMHCC.pdf. Accessed 28 Mar 2013

  70. Smith, A.L., Mulligan, R.B., Shirazi, H.M.: Determining the effects of vapor sorption in polymers with the quartz crystal microbalance/heat conduction calorimeter. J. Polym. Sci. Part B Polym. Phys. 42(21), 3893–3906 (2004)

    Article  ADS  Google Scholar 

  71. Smith, A.L., Shirazi, H.M., Smith, F.C.: Real-time monitoring of catalytic surfaces using a mass/heat flow sensor: hydrogenation of ethylene on platinum and palladium. Catal. Lett. 104(3–4), 199–204 (2005)

    Article  Google Scholar 

  72. Yu, G.Y., Hunt, W.D., Josowicz, M., Janata, J.: Development of a magnetic quartz crystal microbalance. Rev. Sci. Instrum. 78(6) (2007)

    Google Scholar 

  73. Vavra, K.C., Yu, G., Josowicz, M., Janata, J.: Magnetic quartz crystal microbalance: magneto-acoustic parameters. J. Appl. Phys. 110(1), 013905-1 (2011)

    Google Scholar 

  74. Sabot, A., Krause, S.: Simultaneous quartz crystal microbalance impedance and electrochemical impedance measurements.Investigation into the degradation of thin polymer films. Anal. Chem. 74(14), 3304–3311 (2002)

    Article  Google Scholar 

  75. Briand, E., Zach, M., Svedhem, S., Kasemo, B., Petronis, S.: Combined QCM-D and EIS study of supported lipid bilayer formation and interaction with pore-forming peptides. Analyst 135(2), 343–350 (2010)

    Article  ADS  Google Scholar 

  76. Paul, D.W., Clark, S.R., Beeler, T.L.: Instrumentation for simultaneous measurement of double-layer capacitance and solution resistance at a QCM electrode. Sens. Actuators B Chem. 17(3), 247–255 (1994)

    Article  Google Scholar 

  77. Roth, M., Dera, T., Drost, A., Hartinger, R., Wendler, F., Endres, H.E., Hillerich, B.: Directly heated quartz crystal microbalance with an integrated dielectric sensor. Sens. Actuators A Phys. 68(1–3), 399–403 (1998)

    Article  Google Scholar 

  78. Heitmann, V., Reiss, B., Wegener, J.; The quartz crystal microbalance in cell biology: basics and applications. In: Steinem, C., Janshoff, A. (eds.) Piezoelectric Sensors. Springer, Berlin (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diethelm Johannsmann .

Glossary

Variable

Definition (Comments)

a

Contact radius

amb

As an index: ambient medium

A

Effective area of the resonator plate

c

Speed of propagation, speed of light

d f

Film thickness

f

Frequency

f

As an index: film

f 0

Resonance frequency at the fundamental (f 0 = Z q /(2m q ) = Z q /(2ρ q d q ))

\( \tilde{G} \)

Shear modulus (\( \tilde{G} = G^{{\prime }} + {\text{i}}G^{{\prime \prime }} \))

G*

Effective shear modulus (Eq. 11.2.12)

k pl

Wavenumber of surface plasmon

k x

x-component of the wavenumber of the incident beam

liq

As an index: liquid (mostly the ambient medium)

n

Overtone order

\( \tilde{n} \)

Refractive index

pl

As an index: plasmon

Q

Quality factor

R(θ)

A reflectivity curve. (In SPR spectroscopy, R is the reflected intensity; θ is the angle of incidence.)

sub

As an index: substrate (mostly a metal film)

z

Spatial coordinate along the surface normal

\( \tilde{Z} \)

Acoustic wave impedance

Z q

Acoustic wave impedance of AT-cut quartz (Z q  = 8.8 × 106 kg m−2 s−1)

Γ

Imaginary part of a resonance frequency

Δ

As a prefix: A shift induced by the presence of the sample

\( {\tilde{\varepsilon}} \)

Dielectric constant optical frequencies (\( {\tilde{\varepsilon } = }\tilde{n}^{2} \))

η

Viscosity

κ P

Spring constant of a contact with a particle

λ

Wavelength

Λ

Wavelength of a corrugation grating (Eq. 16.2.1)

θ

Angle of incidence

ρ

Density

ω

Angular frequency

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johannsmann, D. (2015). Combined Instruments. In: The Quartz Crystal Microbalance in Soft Matter Research. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-07836-6_16

Download citation

Publish with us

Policies and ethics