Skip to main content

Part of the book series: Soft and Biological Matter ((SOBIMA))

  • 2236 Accesses

Abstract

When the sample is structured in the plane of the resonator with a characteristic scale comparable to the wavelength of sound, analytical predictions of the displacement field and the frequency shift are difficult. Among the samples that are heterogeneous in this sense are nanobubbles, nanodroplets, nanoparticles, vesicles, and biological cells. In analyzing such samples, one can rely on common sense and empirical correlations. If one wants to go beyond those more qualitative pictures, one can calculate the area-averaged periodic stress at the resonator surface numerically. An example of a numerical method is discussed in detail. The finite element method (FEM) is employed to solve the incompressible Stokes problem and to predict the periodic interfacial stress. The frequency shift follows from the area-averaged stress and the SLA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayden, O., Lieberzeit, P.A., Blaas, D., Dickert, F.L.: Artificial antibodies for bioanalyte detection-sensing viruses and proteins. Adv. Funct. Mater. 16(10), 1269–1278 (2006)

    Article  Google Scholar 

  2. Bingen, P., Wang, G., Steinmetz, N.F., Rodahl, M., Richter, R.P.: Solvation effects in the quartz crystal microbalance with dissipation monitoring response to biomolecular adsorption. A phenomenological approach. Anal. Chem. 80(23), 8880–8890 (2008)

    Article  Google Scholar 

  3. Olsson, A.L.J., Quevedo, I.R., He, D., Basnet, M., Tufenkji, N.: Using the quartz crystal microbalance with dissipation monitoring to evaluate the size of nanoparticles deposited on surfaces. ACS Nano 7(9), 7833–7843 (2013)

    Article  Google Scholar 

  4. Grest, G.S.: Interfacial sliding of polymer brushes: a molecular dynamics simulation. Phys. Rev. Lett. 76(26), 4979–4982 (1996)

    Article  ADS  Google Scholar 

  5. Urbakh, M., Daikhin, L.: Roughness effect on the frequency of a quartz-crystal resonator in contact with a liquid. Phys. Rev. B 49(7), 4866–4870 (1994)

    Article  ADS  Google Scholar 

  6. Adamczyk, Z., Siwek, B., Zembala, M., Belouschek, P.: Kinetics of localized adsorption of colloid particles. Adv. Colloid Interface Sci. 48, 151–280 (1994)

    Article  Google Scholar 

  7. Kastl, K., Herrig, A., Luthgens, E., Janshoff, A., Steinem, C.: Scrutiny of annexin A1 mediated membrane—membrane interaction by means of a thickness shear mode resonator and computer simulations. Langmuir 20(17), 7246–7253 (2004)

    Article  Google Scholar 

  8. Wriggers, P.: Computational Contact Mechanics. Springer, Heidelberg (2006)

    Google Scholar 

  9. Johannsmann, D., Reviakine, I., Rojas, E., Gallego, M.: Effect of sample heterogeneity on the interpretation of QCM(-D) data: comparison of combined quartz crystal microbalance/atomic force microscopy measurements with finite element method modeling. Anal. Chem. 80(23), 8891–8899 (2008)

    Article  Google Scholar 

  10. Granick, S.: Ferritin—its properties and significance for iron metabolism. Chem. Rev. 38(3), 379–403 (1946)

    Article  Google Scholar 

  11. Hook, F., Rodahl, M., Brzezinski, P., Kasemo, B.: Measurements using the quartz crystal microbalance technique of ferritin monolayers on methyl-thiolated gold: dependence of energy dissipation and saturation coverage on salt concentration. J. Colloid Interface Sci. 208(1), 63–67 (1998)

    Article  Google Scholar 

  12. Johnson, C.A., Yuan, Y., Lenhoff, A.M.: Adsorbed layers of ferritin at solid and fluid interfaces studied by atomic force microscopy. J. Colloid Interface Sci. 223(2), 261–272 (2000)

    Article  Google Scholar 

  13. Hemmersam, A.G., Rechendorff, K., Besenbacher, F., Kasemo, B., Sutherland, D.S.: pH-dependent adsorption and conformational change of ferritin studied on metal oxide surfaces by a combination of QCM-D and AFM. J. Phys. Chem. C 112(11), 4180–4186 (2008)

    Article  Google Scholar 

  14. Johannsmann, D., Reviakine, I., Richter, R.P.: Dissipation in films of adsorbed nanospheres studied by quartz crystal microbalance (QCM). Anal. Chem. 81(19), 8167–8176 (2009)

    Article  Google Scholar 

  15. Reviakine, I., Gallego, M., Johannsmann, D., Tellechea, E.: Adsorbed liposome deformation studied with quartz crystal microbalance. J. Chem. Phys. 136(8), 84702–84705 (2012)

    Article  Google Scholar 

  16. Pomorska, A., Shchukin, D., Hammond, R., Cooper, M.A., Grundmeier, G., Johannsmann, D.: Positive frequency shifts observed upon adsorbing micron-sized solid objects to a quartz crystal microbalance from the liquid phase. Anal. Chem. 82(6), 2237–2242 (2010)

    Article  Google Scholar 

  17. Johannsmann, D.: Viscoelastic, mechanical, and dielectric measurements on complex samples with the quartz crystal microbalance. Phys. Chem. Chem. Phys. 10(31), 4516–4534 (2008)

    Article  Google Scholar 

  18. Tellechea, E., Johannsmann, D., Steinmetz, N.F., Richter, R.P., Reviakine, I.: Model-independent analysis of QCM data on colloidal particle adsorption. Langmuir 25(9), 5177–5184 (2009)

    Article  Google Scholar 

  19. Finger, A., Johannsmann, D.: Hemispherical nanobubbles reduce interfacial slippage in simple liquids. Phys. Chem. Chem. Phys. 13(40), 18015–18022 (2011)

    Article  Google Scholar 

  20. Hook, F., Ray, A., Norden, B., Kasemo, B.: Characterization of PNA and DNA immobilization and subsequent hybridization with DNA using acoustic-shear-wave attenuation measurements. Langmuir 17(26), 8305–8312 (2001)

    Article  Google Scholar 

  21. Reviakine, I., Brisson, A.: Streptavidin 2D crystals on supported phospholipid bilayers: toward constructing anchored phospholipid bilayers. Langmuir 17(26), 8293–8299 (2001)

    Article  Google Scholar 

  22. Stone, H.A.: Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 26, 65–102 (1994)

    Article  ADS  Google Scholar 

  23. Minale, M.: Models for the deformation of a single ellipsoidal drop: a review. Rheol. Acta 49(8), 789–806 (2010)

    Article  Google Scholar 

  24. Hyväluoma, J., Kunert, C., Harting, J.: Simulations of slip flow on nanobubble-laden surfaces. J. Phys. Condens. Matter 23(18), 184106 (2011)

    Article  ADS  Google Scholar 

  25. Steinberger, A., Cottin-Bizonne, C., Kleimann, P., Charlaix, E.: High friction on a bubble mattress. Nat. Mater. 6(9), 665–668 (2007)

    Article  ADS  Google Scholar 

  26. Du, B.Y., Goubaidoulline, E., Johannsmann, D.: Effects of laterally heterogeneous slip on the resonance properties of quartz crystals immersed in liquids. Langmuir 20, 10617–10624 (2004)

    Article  Google Scholar 

  27. Zhang, X.H.: Quartz crystal microbalance study of the interfacial nanobubbles. Phys. Chem. Chem. Phys. 10(45), 6842–6848 (2008)

    Article  Google Scholar 

  28. Lou, S.T., Ouyang, Z.Q., Zhang, Y., Li, X.J., Hu, J., Li, M.Q., Yang, F.J.: Nanobubbles on solid surface imaged by atomic force microscopy. J. Vac. Sci. Technol. B 18(5), 2573–2575 (2000)

    Article  Google Scholar 

  29. Reviakine, I.: private communication

    Google Scholar 

  30. Richter, R.P., Berat, R., Brisson, A.R.: Formation of solid-supported lipid bilayers: an integrated view. Langmuir 22(8), 3497–3505 (2006)

    Article  Google Scholar 

  31. Reviakine, I., Johannsmann, D., Richter, R.P.: Hearing what you cannot see and visualizing what you hear: interpreting quartz crystal microbalance data from solvated interfaces. Anal. Chem. 83(23), 8838–8848 (2011)

    Article  Google Scholar 

  32. Tamm, L.K., McConnell, H.M.: Supported phospholipid-bilayers. Biophys. J. 47(1), 105–113 (1985)

    Article  ADS  Google Scholar 

  33. Sackmann, E.: Supported membranes: scientific and practical applications. Science 271(5245), 43–48 (1996)

    Article  ADS  Google Scholar 

  34. Keller, C.A., Kasemo, B.: Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys. J. 75(3), 1397–1402 (1998)

    Article  ADS  Google Scholar 

  35. Reimhult, E., Hook, F., Kasemo, B.: Vesicle adsorption on SiO2 and TiO2: dependence on vesicle size. J. Chem. Phys. 117(16), 7401–7404 (2002)

    Article  ADS  Google Scholar 

  36. Reviakine, I., Rossetti, F.F., Morozov, A.N., Textor, M.: Investigating the properties of supported vesicular layers on titanium dioxide by quartz crystal microbalance with dissipation measurements. J. Chem. Phys. 122(20), 204711 (2002)

    Article  ADS  Google Scholar 

  37. Reviakine, I., Brisson, A.: Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy. Langmuir 16(4), 1806–1815 (2000)

    Article  Google Scholar 

  38. Richter, R., Mukhopadhyay, A., Brisson, A.: Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study. Biophys. J. 85(5), 3035–3047 (2003)

    Article  ADS  Google Scholar 

  39. Edvardsson, M., Svedhem, S., Wang, G., Richter, R., Rodahl, M., Kasemo, B.: QCM-D and reflectometry instrument: applications to supported lipid structures and their biomolecular interactions. Anal. Chem. 81(1), 349–361 (2009)

    Article  Google Scholar 

  40. Seifert, U.: Adhesion of vesicles in 2 dimensions. Phys. Rev. A 43(12), 6803–6814 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  41. Seifert, U.: Configurations of fluid membranes and vesicles. Adv. Phys. 46(1), 13–137 (1997)

    Article  ADS  Google Scholar 

  42. Mornet, S., Lambert, O., Duguet, E., Brisson, A.: The formation of supported lipid bilayers on silica nanoparticles revealed by cryoelectron microscopy. Nano Lett. 5(2), 281–285 (2005)

    Article  ADS  Google Scholar 

  43. Lee, C.H., Lin, W.C., Wang, J.P.: All-optical measurements of the bending rigidity of lipid-vesicle membranes across structural phase transitions. Phys. Rev. E 64(2), 020901 (2001)

    Article  ADS  Google Scholar 

  44. Yi, Z., Nagao, M., Bossev, D.P.: Bending elasticity of saturated and monounsaturated phospholipid membranes studied by the neutron spin echo technique. J. Phys. Condens. Matter 21(15), 15510 (2009)

    Article  Google Scholar 

  45. Heitmann, V., Reiss, B., Wegener, J.: The quartz crystal microbalance in cell biology: basics and applications. In Steinem, C., Janshoff, A. (eds.) Piezoelectric Sensors. Springer, Berlin (2007)

    Google Scholar 

  46. Sapper, A., Wegener, J., Janshoff, A.: Cell motility probed by noise analysis of thickness shear mode resonators. Anal. Chem. 78(14), 5184–5191 (2006)

    Article  Google Scholar 

  47. Pax, M., Rieger, J., Eibl, R.H., Thielemann, C., Johannsmann, D.: Measurements of fast fluctuations of viscoelastic properties with the quartz crystal microbalance. Analyst 130(11), 1474–1477 (2005)

    Article  ADS  Google Scholar 

  48. Li, J., Thielemann, C., Reuning, U., Johannsmann, D.: Monitoring of integrin-mediated adhesion of human ovarian cancer cells to model protein surfaces by quartz crystal resonators: evaluation in the impedance analysis mode. Biosens. Bioelectron. 20(7), 1333–1340 (2005)

    Article  Google Scholar 

  49. Tessier, L., Patat, F., Schmitt, N., Lethiecq, M., Frangin, Y., Guilloteau, D.: Significance of mass and viscous loads discrimination for an at-quartz blood-group immunosensor. Sens. Actuators B-Chem. 19(1–3), 698–703 (1994)

    Article  Google Scholar 

  50. Bandey, H.L., Cernosek, R.W., Lee, W.E., Ondrovic, L.E.: Blood rheological characterization using the thickness-shear mode resonator. Biosens. Bioelectron. 19(12), 1657–1665 (2004)

    Article  Google Scholar 

  51. Muller, L., Sinn, S., Drechsel, H., Ziegler, C., Wendel, H.P., Northoff, H., Gehring, F.K.: Investigation of prothrombin time in human whole-blood samples with a quartz crystal biosensor. Anal. Chem. 82(2), 658–663 (2010)

    Article  Google Scholar 

  52. Saitakis, M., Gizeli, E.: Acoustic sensors as a biophysical tool for probing cell attachment and cell/surface interactions. Cell. Mol. Life Sci. 69(3), 357–371 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diethelm Johannsmann .

Glossary

Variable

Definition (Comments)

3PL

As an index: 3-Phase Line

A D

Area of a droplet

b S

Slip length (see also Sect. 10.7)

Ca

Capillary number

D

Dissipation factor (D = 2Γ/f r )

D

As an index: Droplet

f

Frequency

f 0

Resonance frequency at the fundamental (f 0 = Z q /(2m q ) = Z q /(2ρ q d q ))

G

Shear modulus

h

Height of an adsorbate layer

k

Wavenumber

liq

As an index: liquid

n

Overtone order

L D

Perimeter of a droplet

p

Pressure

r D

Radius of a droplet

r

Position (a vector)

R

Radius of a liposome (Fig. 12.12)

S

As an index: Surface

t

Time

T

Temperature

T m

Melting temperature of a lipid membrane

u, u

Tangential displacement (when bold: a vector)

v, v, \( {\hat{\text{v}}} \), \( {\hat{\mathbf{v}}} \)

Velocity

vis

As an index: viscous

x, y, z

Spatial coordinates, z: along the surface normal

\( \tilde{Z}_{liq} \)

Shear-wave impedance of a liquid (Z̃ liq  = (iωρ liq η liq )1/2)

\( {\dot{\upgamma }} \)

Shear rate

γ S

Surface energy

Γ

Imaginary part of a resonance frequency

δ

Penetration depth of a shear wave (Newtonian liquids: δ = (2η liq /(ρ liq ω))1/2)

δ L

Loss angle

Δ

As a prefix: A shift induced by the presence of the sample

\( {\upeta ,\tilde{\upeta }} \)

Viscosity

θ

Coverage

ρ

Density

σ

Tangential stress

τ r

Emulsion time (A relaxation time of emulsions and droplets)

ω

Angular frequency

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johannsmann, D. (2015). Heterogeneous Samples. In: The Quartz Crystal Microbalance in Soft Matter Research. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-07836-6_12

Download citation

Publish with us

Policies and ethics