Skip to main content

Part of the book series: Soft and Biological Matter ((SOBIMA))

  • 2301 Accesses

Abstract

Samples, which are homogeneous in the resonator plane, can be modeled as acoustic multilayers. The deformation pattern is a plane wave. Thin films exposed to air behave as predicted by Sauerbrey. For somewhat thicker films, there is a viscoelastic correction scaling as the square of the film’s mass. For films exposed to a liquid, the viscoelastic correction is independent of thickness. If the layer is soft, the correction can be substantial, even for molecularly thin films. Under certain conditions, the film’s elastic compliance, J f ′, can be calculation from the ratio of ΔΓ and (–Δf). Thick films display a film resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A Mathematica file with the content given below is available for download at http://www.pc.tu-clausthal.de/en/forschung/ak-johannsmann/qcm-modellierung/

References

  1. Lu, C.S., Lewis, O.: Investigation of film-thickness determination by oscillating quartz resonators with large mass load. J. Appl. Phys. 43(11), 4385 (1972)

    Google Scholar 

  2. Crane, R.A., Fischer, G.: Analysis of a quartz crystal microbalance with coatings of finite viscosity. J. Phys. D-Appl. Phys. 12(12), 2019–2026 (1979)

    Article  ADS  Google Scholar 

  3. Benes, E.: Improved quartz crystal microbalance technique. J. Appl. Phys. 56(3), 608–626 (1984)

    Article  ADS  Google Scholar 

  4. http://www.ecse.rpi.edu/~schubert/Course-Teaching-modules/A040-Parameters-used-in-E-beam-deposition-system.pdf. Accessed 1 June 2013

  5. Johannsmann, D., Mathauer, K., Wegner, G., Knoll, W.: Viscoelastic properties of thin-films probed with a quartz-crystal resonator. Phys. Rev. B 46(12), 7808–7815 (1992)

    Article  ADS  Google Scholar 

  6. Granstaff, V.E., Martin, S.J.: Characterization of a thickness-shear mode quartz resonator with multiple nonpiezoelectric layers. J. Appl. Phys. 75(3), 1319–1329 (1994)

    Article  ADS  Google Scholar 

  7. Martin, S.J., Bandey, H.L., Cernosek, R.W., Hillman, A.R., Brown, M.J.: Equivalent-circuit model for the thickness-shear mode resonator with a viscoelastic film near film resonance. Anal. Chem. 72(1), 141–149 (2000)

    Article  Google Scholar 

  8. Wolff, O.: Private communication

    Google Scholar 

  9. Salomaki, M., Kankare, J.: Modeling the growth processes of polyelectrolyte multilayers using a quartz crystal resonator. J. Phys. Chem. B 111(29), 8509–8519 (2007)

    Article  Google Scholar 

  10. Domack, A., Johannsmann, D.: Plastification during sorption of polymeric thin films: a quartz resonator study. J. Appl. Phys. 80(5), 2599–2604 (1996)

    Article  ADS  Google Scholar 

  11. Johannsmann, D.: Viscoelastic analysis of organic thin films on quartz resonators. Macromol. Chem. Phys. 200(3), 501–516 (1999)

    Article  Google Scholar 

  12. Domack, A., Prucker, O., Ruhe, J., Johannsmann, D.: Swelling of a polymer brush probed with a quartz crystal resonator. Phys. Rev. E 56(1), 680–689 (1997)

    Article  ADS  Google Scholar 

  13. Johannsmann, D.: Viscoelastic, mechanical, and dielectric measurements on complex samples with the quartz crystal microbalance. Phys. Chem. Chem. Phys. 10(31), 4516–4534 (2008)

    Article  Google Scholar 

  14. Martin, S.J., Granstaff, V.E., Frye, G.C.: Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem. 63(20), 2272–2281 (1991)

    Article  Google Scholar 

  15. Voinova, M.V., Jonson, M., Kasemo, B.: ‘Missing mass’ effect in biosensor’s QCM applications. Biosens. Bioelectron. 17(10), 835–841 (2002)

    Article  Google Scholar 

  16. Kankare, J.: Sauerbrey equation of quartz crystal microbalance in liquid medium. Langmuir 18(18), 7092–7094 (2002)

    Article  Google Scholar 

  17. Du, B.Y., Johannsmann, D.: Operation of the quartz crystal microbalance in liquids: Derivation of the elastic compliance of a film from the ratio of bandwidth shift and frequency shift. Langmuir 20(7), 2809–2812 (2004)

    Article  Google Scholar 

  18. Voinova, M.V., Rodahl, M., Jonson, M., Kasemo, B.: Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Phys. Scr. 59(5), 391–396 (1999)

    Article  ADS  Google Scholar 

  19. Rodahl, M., Kasemo, B.: On the measurement of thin liquid overlayers with the quartz-crystal microbalance. Sens. Actuators A-Phys. 54(1–3), 448–456 (1996)

    Article  Google Scholar 

  20. Craig, V.S.J., Plunkett, M.: Determination of coupled solvent mass in quartz crystal microbalance measurements using deuterated solvents. J. Colloid Interface Sci. 262(1), 126–129 (2003)

    Article  Google Scholar 

  21. Tsortos, A., Papadakis, G., Gizeli, E.: Shear acoustic wave biosensor for detecting DNA intrinsic viscosity and conformation: a study with QCM-D. Biosens. Bioelectron. 24(4), 836–841 (2008)

    Article  Google Scholar 

  22. Papadakis, G., Tsortos, A., Bender, F., Ferapontova, E.E., Gizeli, E.: Direct detection of DNA conformation in hybridization processes. Anal. Chem. 84(4), 1854–1861 (2012)

    Article  Google Scholar 

  23. http://www.pc.tu-clausthal.de/en/forschung/ak-johannsmann/qcm-modellierung/

  24. Lekner, J.: Theory of Reflection of Electromagnetic and Particle Waves. Springer, Berlin (1987)

    Google Scholar 

  25. Bernoulli, D.: Hydrodynamica (1738). http://en.wikipedia.org/wiki/Hydrodynamica. Accessed 15 June 2014

  26. Larson, R.G.: The Structure and Rheology of Complex Fluids. Oxford University Press, New York (1998)

    Google Scholar 

  27. Vinogradova, O.I.: Slippage of water over hydrophobic surfaces. Int. J. Miner. Process. 56(1–4), 31–60 (1999)

    Article  Google Scholar 

  28. Thompson, P.A., Troian, S.M.: A general boundary condition for liquid flow at solid surfaces. Nature 389(6649), 360–362 (1997)

    Article  ADS  Google Scholar 

  29. Huang, D.M., Sendner, C., Horinek, D., Netz, R.R., Bocquet, L.: Water slippage versus contact angle: a quasiuniversal relationship. Phys. Rev. Lett. 101(22), 226101 (2008)

    Google Scholar 

  30. Barrat, J.L., Bocquet, L.: Large slip effect at a nonwetting fluid-solid interface. Phys. Rev. Lett. 82(23), 4671–4674 (1999)

    Article  ADS  Google Scholar 

  31. Neto, C., Evans, D.R., Bonaccurso, E., Butt, H.J., Craig, V.S.J.: Boundary slip in Newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68(12), 2859–2897 (2005)

    Google Scholar 

  32. Bowden, F.P., Tabor, D.: Friction lubrication and wear—a survey of work during last decade. Br. J. Appl. Phys. 17(12), 1521–1524 (1966)

    Article  ADS  Google Scholar 

  33. Tucker, C.L., Moldenaers, P.: Microstructural evolution in polymer blends. Annu. Rev. Fluid Mech. 34, 177–210 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  34. Barnes, H.A.: A review of the slip (wall depletion) of polymer-solutions, emulsions and particle suspensions in viscometers—its cause, character, and cure. J. Nonnewton. Fluid Mech. 56(3), 221–251 (1995)

    Article  Google Scholar 

  35. Lefevre, B., Saugey, A., Barrat, J.L., Bocquet, L., Charlaix, E., Gobin, P.F., Vigier, G.: Intrusion and extrusion of water in highly hydrophobic mesoporous materials: effect of the pore texture. Colloids Surf. A-Physicochem. Eng. Aspects 241(1–3), 265–272 (2004)

    Article  Google Scholar 

  36. Boehnke, U.C., Remmler, T., Motschmann, H., Wurlitzer, S., Hauwede, J., Fischer, T.M.: Partial air wetting on solvophobic surfaces in polar liquids. J. Colloid Interface Sci. 211(2), 243–251 (1999)

    Article  Google Scholar 

  37. Al-Fetlawi, H., Shah, A.A., Walsh, F.C.: Modelling the effects of oxygen evolution in the all-vanadium redox flow battery. Electrochim. Acta 55(9), 3192–3205 (2009)

    Article  Google Scholar 

  38. Zhitomirsky, I.: Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Adv. Colloid Interface Sci. 97(1–3), 279–317 (2002)

    Article  Google Scholar 

  39. Ferrante, F., Kipling, A.L., Thompson, M.: Molecular slip at the solid-liquid interface of an acoustic-wave sensor. J. Appl. Phys. 76(6), 3448–3462 (1994)

    Article  ADS  Google Scholar 

  40. McHale, G., Lucklum, R., Newton, M.I., Cowen, J.A.: Influence of viscoelasticity and interfacial slip on acoustic wave sensors. J. Appl. Phys. 88(12), 7304–7312 (2000)

    Article  ADS  Google Scholar 

  41. Ellis, J.S., Hayward, G.L.: Interfacial slip on a transverse-shear mode acoustic wave device. J. Appl. Phys. 94(12), 7856–7867 (2003)

    Article  ADS  Google Scholar 

  42. Daikhin, L., Gileadi, E., Tsionsky, V., Urbakh, M., Zilberman, G.: Slippage at adsorbate-electrolyte interface. Response of electrochemical quartz crystal microbalance to adsorption. Electrochim. Acta 45(22–23), 3615–3621 (2000)

    Article  Google Scholar 

  43. Zhuang, H., Lu, P., Lim, S.P., Lee, H.P.: Effects of interface slip and viscoelasticity on the dynamic response of droplet quartz crystal microbalances. Anal. Chem. 80(19), 7347–7353 (2008)

    Article  Google Scholar 

  44. Tretheway, D.C., Meinhart, C.D.: Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 14(3), L9–L12 (2002)

    Article  ADS  Google Scholar 

  45. Klein, J., Kumacheva, E., Perahia, D., Mahalu, D., Warburg, S.: Interfacial sliding of polymer-bearing surfaces. Faraday Discuss. 98, 173–188 (1994)

    Article  ADS  Google Scholar 

  46. Urbakh, M., Tsionsky, V.; Gileadi, E.; Daikhin, L.: Probing the solid/liquid interface with the quartz crystal microbalance. In: Steinem, C., Janshoff, A. (eds.) Piezoeletric Sensors. Springer, Heidelberg (2006)

    Google Scholar 

  47. Du, B.Y., Goubaidoulline, E., Johannsmann, D.: Effects of laterally heterogeneous slip on the resonance properties of quartz crystals immersed in liquids. Langmuir 20, 10617–10624 (2004)

    Article  Google Scholar 

  48. Decher, G.: Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330), 1232–1237 (1997)

    Article  Google Scholar 

  49. Wolff, O., Seydel, E., Johannsmann, D.: Viscoelastic properties of thin films studied with quartz crystal resonators. Faraday Discuss. 107, 91–104 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diethelm Johannsmann .

Glossary

Variable

Definition (Comments)

app

As an index: apparent

b sl

Slip length

b sl,ac

Acoustic slip length (Eq. 10.7.5)

Speed of (shear) sound (\( \tilde{c} = (\tilde{G}/\uprho )^{1/2} \))

d

Thickness of a layer

d q

Thickness of the resonator (\( d_{q} = m_{q} /\uprho_{q} = Z_{q} /(2\uprho_{q} f_{0} ) \))

f

Frequency

f

As an index: film

f 0

Resonance frequency at the fundamental (f 0 = Z q /(2m q ) = Z q /(2ρ q d q ))

FR

As an index: Film Resonance

\( \tilde{G} \)

Shear modulus

G

Limiting storage modulus at high frequency

\( \tilde{J} \)

Shear compliance (\( \tilde{J} = 1/\tilde{G} \))

\( \tilde{k} \)

Wavenumber (\( \tilde{k} = \upomega /\tilde{c} \))

liq

As an index: liquid

m

Mass per unit area

m q

Mass per unit area of the resonator (\( m_{q} = \uprho_{q} d_{q} = Z_{q} /(2f_{0} ) \))

n

Overtone order

\( \tilde{r} \)

Amplitude reflection coefficient (reflectivity, for short)

ref

As an index: reference state of a crystal in the absence of a load or reference frequency for viscoelastic constants (Eq. 10.4.1)

S

As an index: Surface

SL

As an index: Slipping Layer

t

Time

\( \hat{u} \)

(Tangential) displacement

\( {\hat{\rm{v}}} \)

Velocity

w

Width of a fuzzy interface (Sect. 10.8)

z i

Point of inflection of a segment density profile (Sect. 10.8)

\( \tilde{Z}_{liq} \)

Shear-wave impedance of a liquid (\( \tilde{Z}_{liq} = (\text{i}\upomega \uprho_{liq} \upeta_{liq} )^{1/2} \))

\( \tilde{Z}_{L} \)

Load impedance

z max

Limit of integration range (Sect. 10.8)

Z q

Acoustic wave impedance of AT-cut quartz (Z q  = 8.8 × 106 kg m−2 s−1)

\( \upbeta^{\prime},\upbeta^{\prime\prime} \)

Power law exponents (Eq. 10.4.1)

\( \Gamma \)

Imaginary part of a resonance frequency

\( \updelta \)

Penetration depth of a shear wave (Newtonian liquids: \( \updelta = (2\upeta_{liq} /(\uprho_{liq} \upomega ))^{1/2} \))

Δ

As a prefix: A shift induced by the presence of the sample

φ

Polymer volume fraction (Sect. 10.8)

\( \tilde{\upeta },\upeta \)

Viscosity \( \tilde{\upeta } = \tilde{G}/({\text{i}}\upomega ) \)

ρ

Density

\( \hat{\upsigma } \)

(Tangential) stress

\( \hat{\upsigma }_{s} \)

Tangential stress at the surface, also: “traction”

τ

Relaxation time

ω

Angular frequency

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johannsmann, D. (2015). Stratified Layer Systems. In: The Quartz Crystal Microbalance in Soft Matter Research. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-07836-6_10

Download citation

Publish with us

Policies and ethics