Skip to main content

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

The QCM is an amazingly simple device. It consists of a disk of crystalline quartz. The acoustic resonances of this plate can be excited electrically because crystalline quartz is piezoelectric. The main application of quartz resonators is in time and frequency control. However, the resonance frequency and the resonance bandwidth depend on the resonator’s environment and the plate can therefore be used as a frequency-based sensor. The chapter gives a brief tour through the modeling process, mostly building on the parallel plate and emphasizing the small load approximation (SLA). Models beyond the parallel plate as well as refinements of the SLA are also discussed. The chapter concludes with an overview of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://de.wikipedia.org/wiki/Schwingquarz, Accessed 6 Feb 2013. The number of 4.5 billion USD includes all piezoelectric resonators (including tuneforks)

  2. http://en.wikipedia.org/wiki/Crystal_oscillator, Accessed 6 Feb 2013

  3. http://www.am1.us/Local_Papers/U11625%20VIG-TUTORIAL.pdf, Accessed 18 June 2014

  4. Dava Sobel: Longitude: The True Story of a Lone Genius who Solved the Greatest Scientific Problem of His Time. Penguin, New York (1996)

    Google Scholar 

  5. http://www.technologyreview.com/view/418326/where-is-the-best-clock-in-the-universe/, Accessed 9 Feb 2013

  6. Galliou, S., Goryachev, M., Bourquin, R., Abbe, P., Aubry, J.P., Tobar, M.E.: Extremely low loss phonon-trapping cryogenic acoustic cavities for future physical experiments. Sci. Rep. 3, 2132 (2013)

    Google Scholar 

  7. Nicholson, A.M.: Generating and transmitting electric currents U.S. Patent 2,212,845, filed Apr 10, 1918, granted Aug 27, 1940

    Google Scholar 

  8. http://en.wikipedia.org/wiki/Potassium_sodium_tartrate, Accessed 15 Feb 2013

  9. Marrison, W.A.: The Crystal Clock. Nat. Acad. Sci. Proc. 16, 496–507 (1930)

    Article  ADS  Google Scholar 

  10. Marrison, W.A.: The evolution of the quartz crystal clock. Bell Sys. Tech. J. 27, 510–588 (1948) (Reprint online)

    Google Scholar 

  11. Koga, I.: Thickness vibrations of piezoelectric oscillating crystals. Phys A J. Gen. App. Phys. 3(1), 70–80 (1932)

    MATH  MathSciNet  Google Scholar 

  12. http://en.wikipedia.org/wiki/Pierce_oscillator, Accessed 15 Feb 2013

  13. http://en.wikipedia.org/wiki/History_of_timekeeping_devices, Accessed 15 Feb 2013

  14. http://www.ieee-uffc.org/main/history.asp?file=bottom, Accessed 15 Feb 2013

  15. http://www.piezo.com/tech4history.html, Accessed 15 Feb 2013

  16. Iwasaki, F., Iwasaki, H.: Historical review of quartz crystal growth. J. Cryst. Growth 237, 820–827 (2002)

    Article  ADS  Google Scholar 

  17. For an overview see Piazza: G.; Felmetsger, V.; Muralt, P.; Olsson, R.H.; Ruby, R., Piezoelectric aluminum nitride thin films for microelectromechanical systems. MRS Bull. 37(11), 1051–1061 (2012)

    Article  Google Scholar 

  18. Chen, D., Wang, J.J., Xu, Y., Li, D.H., Zhang, L.Y., Li, Z.X.: Highly sensitive detection of organophosphorus pesticides by acetylcholinesterase-coated thin film bulk acoustic resonator mass-loading sensor. Biosens. Bioelectron. 41, 163–167 (2013)

    Article  Google Scholar 

  19. Nirschel, M.: Label-free Biosensors: Thin-film Bulk Acoustic Resonators: Theory and Application of FBARs for Biomolecular Interaction. Südwestdeutscher Verlag für Hochschulschriften (2012)

    Google Scholar 

  20. Wingqvist, G.: AlN-based sputter-deposited shear mode thin film bulk acoustic resonator (FBAR) for biosensor applications—A review. Surf. Coat. Technol. 205(5), 1279–1286 (2010)

    Article  Google Scholar 

  21. Wingqvist, G., Bjurstrom, J., Liljeholm, L., Yantchev, V., Katardjiev, I.: Shear mode AlN thin film electro-acoustic resonant sensor operation in viscous media. Sens. Actuators B Chem. 123(1), 466–473 (2007)

    Article  Google Scholar 

  22. http://tf.boulder.nist.gov/general/pdf/214.pdf, Accessed 15 Feb 2013

  23. http://www.oscilloquartz.com/, Accessed 28 Mar 2013

  24. Hinkley, N., Sherman, J. A., Phillips, N. B., Schioppo, M., Lemke, N. D., Beloy, K., Pizzocaro, M., Oates, C. W., Ludlow, A. D.: An Atomic Clock with 10–18 Instability. Science 341, 1215–1218 (2013)

    Google Scholar 

  25. http://www.quartzdyne.com/

  26. EerNisse, E.P., Wiggins, R.B.: Review of thickness-shear mode quartz resonator sensors for temperature and pressure. IEEE Sens. J. 1(1), 79–87 (2001)

    Article  Google Scholar 

  27. Sauerbrey, G.: Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Physik 155(2), 206–222 (1959)

    Article  ADS  Google Scholar 

  28. Yang, Y.T., Callegari, C., Feng, X.L., Ekinci, K.L., Roukes, M.L.: Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6(4), 583–586 (2006)

    Article  ADS  Google Scholar 

  29. Chaste, J., Eichler, A., Moser, J., Ceballos, G., Rurali, R., Bachtold, A.: A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7(5), 300–303 (2012)

    Article  ADS  Google Scholar 

  30. Brice, J.C.: Crystals for Quartz Resonators. Rev. Mod. Phys. 57(1), 105–146 (1985)

    Google Scholar 

  31. Su, X.D., Ng, H.T., Dai, C.C., O’Shea, S.J., Li, S.F.Y.: Disposable, low cost, silver-coated, piezoelectric quartz crystal biosensor and electrode protection. Analyst 125(12), 2268–2273 (2000)

    Article  ADS  Google Scholar 

  32. Mason, W.P., Baker, W.O., McSkimin, H.J., Heiss, J.H.: Mechanical Properties of Long Chain Molecule Liquids at Ultrasonic Frequencies. Phys. Rev. 73(9), 1074–1091 (1948)

    Google Scholar 

  33. McSkimin, H.J.: Measurement of Dynamic Shear Viscosity and Stiffness of Viscous Liquids by Means of Traveling Torsional Waves. J. Acoust. Soc. Am. 24(4), 355–365 (1952)

    Google Scholar 

  34. Mason, W.P., Baker, W.O., McSkimin, H.J., Heiss, J.H.: Measurement of Shear Elasticity and Viscosity of Liquids at Ultrasonic Frequencies. Phys. Rev. 75(6), 936–946 (1949)

    Google Scholar 

  35. McSkimin, H.J.: Measurement of the Shear Impedance of Viscous Liquids by Means of Traveling Torsional Waves. J. Acoust. Soc. Am. 24(1), 117 (1952)

    Google Scholar 

  36. Mason, W.P.: Piezoelectric Crystals and Their Applications to Ultrasonics. Princeton, Van Nostrand (1948)

    Google Scholar 

  37. Nomura, T., Okuhara, M.: Frequency-shifts of piezoelectric quartz crystals immersed in organic liquids. Analytica Chimica Acta, 142, 281–284 (1982)

    Google Scholar 

  38. Nomura, T., Hattori, O.: Determination of micromolar concentrations of cyanide in solution with a piezoelectric detector. Analytica Chimica Acta, 115, 323–326 (1980)

    Google Scholar 

  39. Bruckenstein, S., Shay, M.: Experimental aspects of use of the quartz crystal microbalance in solution. Electrochim. Acta 30(10), 1295–1300 (1985)

    Article  Google Scholar 

  40. Buttry, D.A., Ward, M.D.: Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem. Rev. 92(6), 1355–1379 (1992)

    Article  Google Scholar 

  41. Schumacher, R.: The quartz microbalance—a novel-approach to the insitu investigation of interfacial phenomena at the solid liquid junction. Angew. Chem. Int. Eng. 29(4), 329–343 (1990)

    Article  Google Scholar 

  42. Thompson, M., Kipling, A.L., Duncanhewitt, W.C., Rajakovic, L.V., Cavicvlasak, B.A.: Thickness-shear-mode acoustic-wave sensors in the liquid-phase—a review. Analyst 116(9), 881–890 (1991)

    Article  ADS  Google Scholar 

  43. Janshoff, A., Galla, H.J., Steinem, C.: Piezoelectric mass-sensing devices as biosensors—An alternative to optical biosensors? Angew. Chem. Int. Eng. 39(22), 4004–4032 (2000)

    Article  Google Scholar 

  44. Bunde, R.L., Jarvi, E.J., Rosentreter, J.J.: Piezoelectric quartz crystal biosensors. Talanta 46(6), 1223–1236 (1998)

    Article  Google Scholar 

  45. Marx, K.A.: Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 4(5), 1099–1120 (2003)

    Article  Google Scholar 

  46. Rickert, J., Brecht, A., Gopel, W.: Quartz crystal microbalances for quantitative biosensing and characterizing protein multilayers. Biosens. Bioelectron. 12(7), 567–575 (1997)

    Article  Google Scholar 

  47. Konash, P.L., Bastiaans, G.J.: Piezoelectric-crystals as detectors in liquid-chromatography. Anal. Chem. 52(12), 1929–1931 (1980)

    Article  Google Scholar 

  48. Alder, J.F., McCallum, J.J.: Piezoelectric-crystals for mass and chemical measurements—a review. Analyst 108(1291), 1169–1189 (1983)

    Article  ADS  Google Scholar 

  49. Mieure, J.P., Jones, J.L.: Electrogravimetric trace analysis on a piezoelectric detector. Talanta 16(1), 149 (1969)

    Article  Google Scholar 

  50. Jones, J.L., Mieure, J.P.: A piezoelectric transducer for determination of metals at micromolar level. Anal. Chem. 41(3), 484 (1969)

    Article  Google Scholar 

  51. Borovikov, A.P.: Measurement of viscosity of media by means of shear vibration of plane piezoresonators. Instrum. Exp. Tech. 19(1), 223–224 (1976)

    Google Scholar 

  52. Tabidze, A.A., Kazakov, R.K.: High-frequency ultrasonic unit for measuring the complex shear modulus of liquids. Meas. Tech. USSR 26(1), 24–27 (1983)

    Article  Google Scholar 

  53. Pechhold, W.: Eine Methode zur Messung des Komplexen Schubmoduls im Frequenzbereich 1–100 kHz. Acustica 9, 39 (1959)

    Google Scholar 

  54. Rodahl, M., Hook, F., Krozer, A., Brzezinski, P., Kasemo, B.: Quartz-crystal microbalance setup for frequency and q-factor measurements in gaseous and liquid environments. Rev. Sci. Instrum. 66(7), 3924–3930 (1995)

    Article  ADS  Google Scholar 

  55. Hirao, M., Ogi, H., Fukuoka, H.: Resonance emat system for acoustoelastic stress measurement in sheet metals. Rev. Sci. Instrum. 64(11), 3198–3205 (1993)

    Article  ADS  Google Scholar 

  56. Sittel, K., Rouse, P.E., Bailey, E.D.: Method for determining the viscoelastic properties of dilute polymer solutions at audio-frequencies. J. Appl. Phys. 25(10), 1312–1320 (1954)

    Article  ADS  Google Scholar 

  57. Lucklum, R., Hauptmann, P.: Acoustic microsensors-the challenge behind microgravimetry. Anal. Bioanal. Chem. 384(3), 667–682 (2006)

    Article  Google Scholar 

  58. Martin, S.J., Granstaff, V.E., Frye, G.C.: Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem. 63(20), 2272–2281 (1991)

    Article  Google Scholar 

  59. Kanazawa, K.K., Gordon, J.G.: Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 57(8), 1770–1771 (1985)

    Article  Google Scholar 

  60. Stockbridge, C.D.: In: Behrndt, K.H. (eds.) Vacuum Microbalance Techniques, 4 edn., Vol. 5 Plenum Press, New York (1966)

    Google Scholar 

  61. Glassford, A.P.M.: Response of a Quartz Crystal Microbalance to a Liquid Deposit. J. Vac. Sci. Tech. 15(6), 1836–1843 (1978)

    Article  ADS  Google Scholar 

  62. http://en.wikipedia.org/wiki/Escapement, Accessed 9 May 2013

  63. Han, S.M., Benaroya, H., Wei, T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225(5), 935–988 (1999)

    Article  ADS  MATH  Google Scholar 

  64. Woan, G.: The Cambridge Handbook of Physics Formulas. Cambridge University Press, Cambridge (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diethelm Johannsmann .

Glossary

Variable

Definition

c q

Speed of shear sound in AT-cut quartz plates

d f

Thickness of film

d q

Thickness of resonator plate

f r

Resonance frequency

λ

Wavelength of sound

κ R

Effective spring constant of the resonator

M R

Effective mass of the resonator

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johannsmann, D. (2015). Introduction. In: The Quartz Crystal Microbalance in Soft Matter Research. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-07836-6_1

Download citation

Publish with us

Policies and ethics