Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

This chapter summarizes several recurrent issues related to efficient numerical simulations of problems encountered in engineering sciences. In order to alleviate such issues, model reduction techniques constitute an appealing alternative to standard discretization techniques. First, reduction techniques based on Proper Orthogonal Decompositions are revisited. Their use is illustrated and discussed, suggesting the interest of a priori separated representations which are at the heart of the Proper Generalized Decomposition (PGD). The main ideas behind the PGD are described, underlying its potential for addressing standard computational mechanics models in a non-standard way, within a new computational engineering paradigm. The chapter ends with a brief overview of some recent PGD applications in different areas, proving the potentiality of this novel technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Cancès, M. Defranceschi, W. Kutzelnigg, C. Le Bris, Y. Maday, Computational Quantum Chemistry: a primer. in Handbook of Numerical Analysis, vol. 10 (Elsevier, Amsterdam, 2003) pp. 3–270

    Google Scholar 

  2. C. Le Bris (ed) Handbook of Numerical Analysis, in Computational Chemistry, vol. 10 (Elsevier, Amsterdam, 2003)

    Google Scholar 

  3. C. Le Bris, P. L. Lions, From atoms to crystals: a mathematical journey. Bull. Am. Math. Soc. 42(3), 291–363 (2005)

    Google Scholar 

  4. C. Le Bris, Mathematical and numerical analysis for molecular simulation: accomplishments and challenges, in Proceedings of the International Congress of Mathematicians, Madrid, Spain, 2003, pp. 1507–1522

    Google Scholar 

  5. B.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, Dynamics of polymeric liquids, in Kinetic Theory, vol. 2 (Wiley, New York, 1987)

    Google Scholar 

  6. N. Bellomo, Modeling Complex Living Systems (Birkhauser, Boston, 2008)

    Google Scholar 

  7. A. Ammar, E. Cueto, F. Chinesta, Reduction of the chemical master equation for gene regulatory networks using proper generalized dcompositions. Int. J. Numer. Methods Biomed. Eng. 28(9), 960–973 (2012)

    Google Scholar 

  8. F. Darema, Engineering/scientific and commercial applications: differences, similarities, and future evolution. in Proceedings of the Second Hellenic European Conference on Mathematics and Informatics, HERMIS, vol. 1, 1994, pp. 367–374

    Google Scholar 

  9. N.S.F. Final, D.D.D.A.S. Report, Workshop, (Arlington, VA, 2006)

    Google Scholar 

  10. J.T. Oden, T. Belytschko, J. Fish, T.J.R. Hughes, C. Johnson, D. Keyes, A. Laub, L. Petzold, D. Srolovitz, S.Yip. Simulation-Based Engineering Science: Revolutionizing Engineering Science through simulation. NSF Blue Ribbon Panel on SBES, 2006

    Google Scholar 

  11. D. Ryckelynck, F. Chinesta, E. Cueto, A. Ammar, On the a priori model reduction: overview and recent developments. Arch. Comput. methods Eng. State Art Rev. 13(1), 91–128 (2006)

    Google Scholar 

  12. R.A. Bialecki, A.J. Kassab, A. Fic, Proper orthogonal decomposition and modal analysis for acceleration of transient FEM thermal analysis. Int. J. Numer. Meth. Eng. 62, 774–797 (2005)

    Article  MATH  Google Scholar 

  13. J. Burkardt, M. Gunzburger, H-Ch. Lee, POD and CVT-based reduced-order modeling of Navier-Stokes flows. Comput. Methods Appl. Mech. Eng. 196, 337–355 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. M.D. Gunzburger, J.S. Peterson, J.N. Shadid, Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data. Comput. Methods Appl. Mech. Eng. 196, 1030–1047 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Maday, E.M. Ronquist, The reduced basis element method: application to a thermal fin problem. SIAM J. Sci. Comput., 26(1), 240–258 (2004)

    Google Scholar 

  16. H.M. Park, D.H. Cho, The use of the Karhunen-Loeve decomposition for the modelling of distributed parameter systems. Chem. Eng. Sci. 51, 81–98 (1996)

    Article  Google Scholar 

  17. D. Ryckelynck, L. Hermanns, F. Chinesta, E. Alarcon, An efficient a priori model reduction for boundary element models. Eng. Anal. Bound. Elem. 29, 796–801 (2005)

    Article  MATH  Google Scholar 

  18. D. Ryckelynck, F. Chinesta, E. Cueto, A. Ammar, On the a priori model reduction: overview and recent developments. Arch. Comput. Methods Eng. 12(1), 91–128 (2006)

    Google Scholar 

  19. P. Ladevèze, The large time increment method for the analyze of structures with nonlinear constitutive relation described by internal variables. C. R. Acad. Sci. Paris 309, 1095–1099 (1989)

    MATH  Google Scholar 

  20. P. Ladevèze, J.-C. Passieux, D. Néron, The latin multiscale computational method and the proper generalized decomposition. Comput. Methods Appl. Mech. Eng. 199(21–22), 1287–1296 (2010)

    Google Scholar 

  21. D. Néron, P. Ladevèze, Proper generalized decomposition for multiscale and multiphysics problems. Arch. Comput. Methods Eng. 17(4), 351–372 (2010)

    Google Scholar 

  22. A. Nouy, P. Ladevèze, Multiscale computational strategy with time and space homogenization: a radial-type approximation technique for solving microproblems. Int. J. Multiscale Comput. Eng. 170(2), 557–574 (2004)

    Google Scholar 

  23. J.-C. Passieux, P. Ladevèze, D.Néron, A scalable time-space multiscale domain decomposition method: adaptive time scale separation. Comput. Mech. 46(4), 621–633 (2010)

    Google Scholar 

  24. F. Chinesta, A. Ammar, E. Cueto, Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch. Comput. Methods Eng. 17(4), 327–350 (2010)

    Google Scholar 

  25. F. Chinesta, P. Ladeveze, E. Cueto, A short review in model order reduction based on proper generalized decomposition. Arch. Comput. Methods Eng. 18, 395–404 (2011)

    Article  Google Scholar 

  26. F. Chinesta, A. Leygue, F. Bordeu, J.V. Aguado, E. Cueto, D. Gonzalez, I. Alfaro, A. Ammar, A. Huerta, PGD-based computational vademecum for efficient design, optimization and control. Arch. Comput. Methods Eng. 20, 31–59 (2013)

    Article  MathSciNet  Google Scholar 

  27. A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J. Nonnewton. Fluid Mech. 139, 153–176 (2006)

    Article  MATH  Google Scholar 

  28. B. Mokdad, E. Pruliere, A. Ammar, F. Chinesta, On the simulation of kinetic theory models of complex fluids using the Fokker-Planck approach. Appl. Rheol. 17(2), 1–14 (2007) 26494

    Google Scholar 

  29. A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: Transient simulation using space-time separated representation. J. Nonnewton. Fluid Mech. 144, 98–121 (2007)

    Article  MATH  Google Scholar 

  30. A. Ammar, M. Normandin, F. Daim, D. Gonzalez, E. Cueto, F. Chinesta, Non-incremental strategies based on separated representations: applications in computational rheology. Commun. Math. Sci. 8(3), 671–695 (2010)

    Google Scholar 

  31. S. Aghighi, A. Ammar, C. Metivier, M. Normandin, F. Chinesta, Non-incremental transient solution of the Rayleigh-Bnard convection model using the PGD. J. Nonnewton. Fluid Mech. 200, 65–78 (2013). doi: 10.1016/j.jnnfm.2012.11.007 (2013)

    Google Scholar 

  32. B. Mokdad, A. Ammar, M. Normandin, F. Chinesta, J.R. Clermont, A fully deterministic micro-macro simulation of complex flows involving reversible network fluid models. Math. Comput. Simul. 80, 1936–1961 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. E. Pruliere, A. Ammar, N. El Kissi, F. Chinesta, Recirculating flows involving short fiber suspensions: numerical difficulties and efficient advanced micro-macro solvers. Arch. Comput. Methods Eng State Art Rev. 16, 1–30 (2009)

    Article  MATH  Google Scholar 

  34. F. Chinesta, A. Ammar, A. Falco, M. Laso, On the reduction of stochastic kinetic theory models of complex fluids. Model. Simul. Mater. Sci. Eng. 15, 639–652 (2007)

    Article  Google Scholar 

  35. E. Abisset-Chavanne, R. Mezher, S. Le Corre, A. Ammar, F. Chinesta. Kinetic theory microstructure modeling in concentrated suspensions. Entropy, In press

    Google Scholar 

  36. F. Chinesta, From single-scale to two-scales kinetic theory descriptions of rods suspensions. Arch. Comput. Methods Eng. 20(1), 1–29 (2013)

    Google Scholar 

  37. M. Grmela, F. Chinesta, A. Ammar, Mesoscopic tube model of fluids composed of wormlike micelles. Rheol. Acta 49(5), 495–506 (2010)

    Google Scholar 

  38. M. Grmela, A. Ammar, F. Chinesta. One and two-fiber orientation kinetic theories of fiber suspensions. J. Nonnewton. Fluid Mech. 200, 17–33 (2013). doi: 10.1016/j.jnnfm.2012.10.009 (2013)

    Google Scholar 

  39. G. Maitejean, A. Ammar, F Chinesta, M. Grmela, Deterministic solution of the kinetic theory model of colloidal suspensions of structureless particles. Rheol. Acta 51(6), 527–543 (2012)

    Google Scholar 

  40. G. Maitrejean, M. Grmela, A. Ammar, F. Chinesta, Kinetic theory of colloidal suspensions: morphology, rheology and migration. Rheol. Acta 52(6), 557–577 (2013)

    Google Scholar 

  41. A. Ammar, F. Chinesta, P. Joyot, The nanometric and micrometric scales of the structure and mechanics of materials revisited: an introduction to the challenges of fully deterministic numerical descriptions. Int. J. Multiscale Comput. Eng. 6(3), 191–213 (2008)

    Google Scholar 

  42. G. Maitrejean, A. Ammar, F. Chinesta, Simulating microstructural evolution during pasive mixing. Int. J. Mater. Form. 5(1), 73–81 (2012)

    Google Scholar 

  43. F. Chinesta, A. Ammar, A. Leygue, R. Keunings, An overview of the proper generalized decomposition with applications in computational rheology. J. Nonnewton. Fluid Mech. 166, 578–592 (2011)

    Article  MATH  Google Scholar 

  44. F. Chinesta, A. Ammar, E. Cueto, On the use of proper generalized decompositions for solving the multidimensional chemical master equation. Eur. J. Comput. Mech. 19, 53–64 (2010)

    Google Scholar 

  45. H. Lamari, A. Ammar, A. Leygue, F. Chinesta, On the solution of the multidimensional Langer’s equation by using the proper generalized decomposition method for modeling phase transitions. Model. Simul. Mater. Sci. Eng. 20, 015007 (2012)

    Article  Google Scholar 

  46. F. Chinesta, A. Ammar, F. Lemarchand, P. Beauchene, F. Boust, Alleviating mesh constraints: model reduction, parallel time integration and high resolution homogenization. Comput. Methods Appl. Mech. Eng. 197(5), 400–413 (2008)

    Google Scholar 

  47. E. Pruliere, F. Chinesta. A. Ammar, A. Leygue, A. Poitou, On the solution of the heat equation in very thin tapes. Int. J. Thermal Sci. 65, 148–157 (2013)

    Google Scholar 

  48. D. Gonzalez, A. Ammar, F. Chinesta, E. Cueto, Recent advances in the use of separated representations. Int. J. Numerical Methods Eng. 81(5), 637–659 (2010)

    Google Scholar 

  49. B. Bognet, A. Leygue, F. Chinesta, A. Poitou, F. Bordeu, Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity. Comput. Methods Appl. Mech. Eng. 201, 1–12 (2012)

    Article  Google Scholar 

  50. A. Leygue, F. Chinesta, M. Beringhier, T.L. Nguyen, J.C. Grandidier, F. Pasavento, B. Schrefler, Towards a framework for non-linear thermal models in shell domains. Int. J. Numerical Methods Heat Fluid Flow, 23(1), 55–73 (2013)

    Google Scholar 

  51. B. Bognet, A. Leygue, F. Chinesta, On the fully 3D simulation of thermoelastic models defined in plate geometries. Eur. J. Comput. Mech. 21(1–2), 40–51 (2012)

    Google Scholar 

  52. E. Giner, B. Bognet, J.J. Rodenas, A. Leygue, J. Fuenmayor, F. Chinesta, The proper generalized decomposition (PGD) as a numerical procedure to solve 3D cracked plates in linear elastic fracture mechanics. Int. J. Solid Structures 50(10), 1710–1720 (2013)

    Google Scholar 

  53. A. Ammar, M. Normandin, F. Chinesta, Solving parametric complex fluids models in rheometric flows. J. Nonnewton. Fluid Mech. 165, 1588–1601 (2010)

    Article  MATH  Google Scholar 

  54. E. Pruliere, F. Chinesta, A. Ammar, On the deterministic solution of multidimensional parametric models by using the proper generalized decomposition. Math. Comput. Simul. 81, 791–810 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  55. H. Lamari, A. Ammar, P. Cartraud, G. Legrain, F. Jacquemin. F. Chinesta, Routes for efficient computational homogenization of non-linear materials using the proper generalized decomposition. Arch. Comput. Methods Eng. 17(4), 373–391 (2010)

    Google Scholar 

  56. F. Chinesta, A. Leygue, B. Bognet, Ch. Ghnatios, F. Poulhaon, F. Bordeu, A. Barasinski, A. Poitou, S. Chatel, S. Maison-Le-Poec, First steps towards an advanced simulation of composites manufacturing by Automated Tape Placement. Int. J. Mater. Form. doi: 10.1007/s12289-012-1112-9 (in press)

    Google Scholar 

  57. Ch. Ghnatios, F. Chinesta, E. Cueto, A. Leygue, P. Breitkopf, P. Villon, Methodological approach to efficient modeling and optimization of thermal processes taking place in a die: application to pultrusion. Compos. Part A 42, 1169–1178 (2011)

    Google Scholar 

  58. A. Leygue, E. Verron, A first step towards the use of proper general decomposition method for structural optimization. Arch. Comput. Methods Eng. 17(4), 465–472 (2010)

    Google Scholar 

  59. A. Ammar, A. Huerta, F. Chinesta, E. Cueto, A. Leygue, Parametric solutions involving geometry: a step towards efficient shape optimization. Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2013.09.003 (in press)

    Google Scholar 

  60. D. Gonzalez, F. Masson, F. Poulhaon, A. Leygue, E. Cueto, F. Chinesta, Proper generalized decomposition based dynamic data-driven inverse identification. Math. Comput. Simul. 82(9), 1677–1695 (2012)

    Google Scholar 

  61. Ch. Ghnatios, F. Masson, A. Huerta, E. Cueto, A. Leygue, F. Chinesta, Proper generalized decomposition based dynamic data-driven control of thermal processes. Comput. Methods Appl. Mech. Eng. 213, 29–34 (2012)

    Article  Google Scholar 

  62. S. Niroomandi, I. Alfaro, E. Cueto, F. Chinesta, Real-time deformable models of non-linear tissues by model reduction techniques. Comput. Meth. Programs Biomed. 91, 223–231 (2008)

    Article  Google Scholar 

  63. S. Niroomandi, I. Alfaro, D. Gonzalez, E. Cueto, F. Chinesta, Real time simulation of surgery by reduced order modelling and X-FEM techniques. Int. J. Numerical Methods Biomed. Eng. 28(5), 574–588 (2012)

    Google Scholar 

  64. S. Niroomandi, D. Gonzalez, I. Alfaro, F. Bordeu, A. Leygue, E. Cueto, F. Chinesta, Real time simulation of biological soft tissues : a PGD approach. Int. J. Numerical Methods Biomed. Eng. 29(5), 586–600 (2013)

    Google Scholar 

  65. I. Alfaro, D. Gonzalez, F. Bordeu, A. Leygue, A. Ammar, E. Cueto, F. Chinesta, Real-time in sillico experiments on gene regulatory networks and surgery simulation on handheld devices, J. Comput. Surg. (in press)

    Google Scholar 

  66. A. Dumon, C. Allery, A. Ammar, Proper generalized decomposition method for incompressible Navier-Stokes equations with a spectral discretization. Appl. Math. Comput. 219(15), 8145–8162 (2013)

    Google Scholar 

  67. A. Ammar, F. Chinesta, P. Diez, A. Huerta, An error estimator for separated representations of highly multidimensional models. Comput. Methods Appl. Mech. Eng. 199, 1872–1880 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  68. P. Ladevèze, L. Chamoin, On the verification of model reduction methods based on the proper generalized decomposition. Comput. Methods Appl. Mech. Eng. 200, 2032–2047 (2011)

    Article  MATH  Google Scholar 

  69. J.P. Moitinho, A basis for bounding the errors of proper generalised decomposition solutions, in solid mechanics. Int. J. Numerical Methods Eng. 94(10), 961–981 (2013)

    Google Scholar 

  70. A. Ammar, E. Pruliere, J. Ferec, F. Chinesta, E. Cueto, Coupling finite elements and reduced approximation bases. Eur. J. Comput. Mech. 18(5–6), 445–463 (2009)

    Google Scholar 

  71. A. Ammar, F. Chinesta, E. Cueto, Coupling finite elements and proper generalized decomposition. Int. J. Multiscale Comput. Eng. 9(1), 17–33 (2011)

    Google Scholar 

  72. F. Chinesta, A. Ammar, E. Cueto, Proper generalized decomposition of multiscale models. Int. J. Numerical Methods Eng. 83(8–9), 1114–1132 (2010)

    Google Scholar 

  73. A. Ammar, F. Chinesta, E. Cueto, M. Doblare, Proper generalized decomposition of time-multiscale models. Int. J. Numerical Methods Eng. 90(5), 569–596 (2012)

    Google Scholar 

  74. F. Poulhaon, F. Chinesta, A. Leygue, A first step towards a PGD based parallelization strategy. Eur. J. Comput. Mech. 21(3–6), 300–311 (2012)

    Google Scholar 

  75. E. Pruliere, J. Ferec, F. Chinesta, A. Ammar, An efficient reduced simulation of residual stresses in composites forming processes. Int. J. Mater. Form. 3(2), 1339–1350 (2010)

    Google Scholar 

  76. A. Ammar, E. Cueto, F. Chinesta, Non-incremental PGD solution of parametric uncoupled models defined in evolving domains. Int. J. Numerical Methods Eng. 93(8), 887–904 (2013)

    Google Scholar 

  77. M. Pineda, F. Chinesta, J. Roger, M. Riera, J. Perez, F. Daim, Simulation of skin effect via separated representations. Int. J. Comput. Math. Electr. Electron. Eng. 29(4), 919–929 (2010)

    Google Scholar 

  78. A. Nouy, Proper generalized decompositions and separated representations for the numerical solution of high dimensional stochastic problems. Arch. Comput.l Methods Eng. State Art Rev. 17, 403–434 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  79. G. Bonithon, P. Joyot, F. Chinesta, P. Villon, Non-incremental boundary element discretization of parabolic models based on the use of proper generalized decompositions. Eng. Anal. Bound. Elem. 35(1), 2–17 (2011)

    Google Scholar 

  80. F. Bordeu, A. Leygue, D. Modesto, D. Gonzalez, E. Cueto, F. Chinesta, A PGD submitted to augmented learning and science and engineering high education. J. Eng. Educ

    Google Scholar 

  81. H. Ben Dhia, Multiscale mechanical problems: the Arlequin method. C. R. Acad. Sci. Paris Ser-II b 326, 899–904 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Chinesta .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Chinesta, F., Keunings, R., Leygue, A. (2014). Introduction. In: The Proper Generalized Decomposition for Advanced Numerical Simulations. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-02865-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02865-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02864-4

  • Online ISBN: 978-3-319-02865-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics