Skip to main content

Regulatory T cells Versus Th17: Differentiation of Th17 Versus Treg, Are They Mutually Exclusive?

  • Chapter
  • First Online:
IL-17, IL-22 and Their Producing Cells: Role in Inflammation and Autoimmunity

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Naive CD4+ cells differentiate into T helper (Th1, Th2, Th9, Th17) and regulatory T (Treg) cells to execute their immunologic function. Whereas TGF-β suppresses Th1 and Th2 cell differentiation, this cytokine promotes Th9, Th17, and Foxp3+ regulatory T cells depending upon the existence of other cytokines. IL-6 promotes Th17 but suppresses regulatory T cell differentiation. Moreover, natural but not TGF-β-induced regulatory T cells convert into Th17 cells in the inflammatory milieu. This chapter discusses the updates of these cell differentiation and conversion, as well as underlying mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gershon RK, Kondo K (1970) Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 18:723–737

    CAS  PubMed  Google Scholar 

  2. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164

    CAS  PubMed  Google Scholar 

  3. Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A, Solomon M, Selby W, Alexander SI, Nanan R et al (2006) Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 203:1693–1700

    Article  CAS  PubMed  Google Scholar 

  4. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D et al (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30:899–911

    Article  CAS  PubMed  Google Scholar 

  5. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4 + CD25+ regulatory T cells. Nat Immunol 4:330–336

    Article  CAS  PubMed  Google Scholar 

  6. Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, Levy-Lahad E, Mazzella M, Goulet O, Perroni L et al (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27:18–20

    Article  CAS  PubMed  Google Scholar 

  7. Zhou X, Kong N, Wang J, Fan H, Zou H, Horwitz D, Brand D, Liu Z, Zheng SG (2010) Cutting edge: all-trans retinoic acid sustains the stability and function of natural regulatory T cells in an inflammatory milieu. J Immunol 185:2675–2679

    Article  CAS  PubMed  Google Scholar 

  8. Allan SE, Crome SQ, Crellin NK, Passerini L, Steiner TS, Bacchetta R, Roncarolo MG, Levings MK (2007) Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol 19:345–354

    Article  CAS  PubMed  Google Scholar 

  9. Tritt M, Sgouroudis E, d’Hennezel E, Albanese A, Piccirillo CA (2008) Functional waning of naturally occurring CD4+ regulatory T-cells contributes to the onset of autoimmune diabetes. Diabetes 57:113–123

    Article  CAS  PubMed  Google Scholar 

  10. Miyara M, Amoura Z, Parizot C, Badoual C, Dorgham K, Trad S, Nochy D, Debre P, Piette JC, Gorochov G (2005) Global natural regulatory T cell depletion in active systemic lupus erythematosus. J Immunol 175:8392–8400

    CAS  PubMed  Google Scholar 

  11. Yan B, Ye S, Chen G, Kuang M, Shen N, Chen S (2008) Dysfunctional CD4+, CD25+ regulatory T cells in untreated active systemic lupus erythematosus secondary to interferon-alpha-producing antigen-presenting cells. Arthritis Rheum 58:801–812

    Article  CAS  PubMed  Google Scholar 

  12. Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE (2006) TNF downmodulates the function of human CD4 + CD25hi T-regulatory cells. Blood 108:253–261

    Article  CAS  PubMed  Google Scholar 

  13. Haas J, Hug A, Viehover A, Fritzsching B, Falk CS, Filser A, Vetter T, Milkova L, Korporal M, Fritz B et al (2005) Reduced suppressive effect of CD4 + CD25 high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur J Immunol 35:3343–3352

    Article  CAS  PubMed  Google Scholar 

  14. Kumar M, Putzki N, Limmroth V, Remus R, Lindemann M, Knop D, Mueller N, Hardt C, Kreuzfelder E, Grosse-Wilde H (2006) CD4 + CD25 + FoxP3+ T lymphocytes fail to suppress myelin basic protein-induced proliferation in patients with multiple sclerosis. J Neuroimmunol 180:178–184

    Article  CAS  PubMed  Google Scholar 

  15. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA (2004) Loss of functional suppression by CD4 + CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199:971–979

    Article  CAS  PubMed  Google Scholar 

  16. Horwitz DA, Zheng SG, Gray JD (2008) Natural and TGF-beta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other. Trends Immunol 29:429–435

    Article  CAS  PubMed  Google Scholar 

  17. Lan Q, Fan H, Quesniaux V, Ryffel B, Liu Z, Zheng SG (2011) Induced Foxp3+ regulatory T cells: a potential new weapon to treat autoimmune and inflammatory diseases? J Mol Cell Biol 4(1):22–28

    Article  PubMed  Google Scholar 

  18. Zhou X, Kong N, Zou H, Brand D, Li X, Liu Z, Zheng SG (2011) Therapeutic potential of TGF-beta-induced CD4(+) Foxp3(+) regulatory T cells in autoimmune diseases. Autoimmunity 44:43–50

    Article  CAS  PubMed  Google Scholar 

  19. Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE, Belkaid Y, Shevach EM (2010) Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol 184:3433–3441

    Article  CAS  PubMed  Google Scholar 

  20. Serre K, Benezech C, Desanti G, Bobat S, Toellner KM, Bird R, Chan S, Kastner P, Cunningham AF, Maclennan IC, Mohr E (2011) Helios is associated with CD4 T cells differentiating to T helper 2 and follicular helper T cells in vivo independently of Foxp3 expression. PLoS One 6:e20731

    Article  CAS  PubMed  Google Scholar 

  21. Ding ZC, Blazar BR, Mellor AL, Munn DH, Zhou G (2010) Chemotherapy rescues tumor-driven aberrant CD4+ T-cell differentiation and restores an activated polyfunctional helper phenotype. Blood 115:2397–2406

    Article  CAS  PubMed  Google Scholar 

  22. Bagavant H, Tung KS (2005) Failure of CD25+ T cells from lupus-prone mice to suppress lupus glomerulonephritis and sialoadenitis. J Immunol 175:944–950

    CAS  PubMed  Google Scholar 

  23. Scalapino KJ, Tang Q, Bluestone JA, Bonyhadi ML, Daikh DI (2006) Suppression of disease in New Zealand Black/New Zealand white lupus-prone mice by adoptive transfer of ex vivo expanded regulatory T cells. J Immunol 177:1451–1459

    CAS  PubMed  Google Scholar 

  24. Huter EN, Stummvoll GH, DiPaolo RJ, Glass DD, Shevach EM (2008) Cutting edge: antigen-specific TGF beta-induced regulatory T cells suppress Th17-mediated autoimmune disease. J Immunol 181:8209–8213

    CAS  PubMed  Google Scholar 

  25. Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4 + CD25+ T cell-mediated suppression by dendritic cells. Science 299:1033–1036

    Article  CAS  PubMed  Google Scholar 

  26. Wakkach A, Fournier N, Brun V, Breittmayer JP, Cottrez F, Groux H (2003) Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 18:605–617

    Article  CAS  PubMed  Google Scholar 

  27. Lu L, Wang J, Zhang F, Chai Y, Brand D, Wang X, Horwitz DA, Shi W, Zheng SG (2010) Role of SMAD and non-SMAD signals in the development of Th17 and regulatory T cells. J Immunol 184:4295–4306

    Article  CAS  PubMed  Google Scholar 

  28. Tsuji M, Komatsu N, Kawamoto S, Suzuki K, Kanagawa O, Honjo T, Hori S, Fagarasan S (2009) Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer’s patches. Science 323:1488–1492

    Article  CAS  PubMed  Google Scholar 

  29. Wan YY, Flavell RA (2007) Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445:766–770

    Article  CAS  PubMed  Google Scholar 

  30. Xu L, Kitani A, Fuss I, Strober W (2007) Cutting edge: regulatory T cells induce CD4 + CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol 178:6725–6729

    CAS  PubMed  Google Scholar 

  31. Zheng SG, Wang J, Horwitz DA (2008) Cutting edge: Foxp3 + CD4 + CD25+ regulatory T cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. J Immunol 180:7112–7116

    CAS  PubMed  Google Scholar 

  32. Hippen KL, Merkel SC, Schirm DK, Nelson C, Tennis NC, Riley JL, June CH, Miller JS, Wagner JE, Blazar BR (2011) Generation and large-scale expansion of human inducible regulatory T cells that suppress graft-versus-host disease. Am J Transplant 11:1148–1157

    Article  CAS  PubMed  Google Scholar 

  33. Hoffmann P, Boeld TJ, Eder R, Huehn J, Floess S, Wieczorek G, Olek S, Dietmaier W, Andreesen R, Edinger M (2009) Loss of FOXP3 expression in natural human CD4 + CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur J Immunol 39:1088–1097

    Article  CAS  PubMed  Google Scholar 

  34. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM (2003) Conversion of peripheral CD4 + CD25- naive T cells to CD4 + CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886

    Article  CAS  PubMed  Google Scholar 

  35. DiPaolo RJ, Brinster C, Davidson TS, Andersson J, Glass D, Shevach EM (2007) Autoantigen-specific TGFbeta-induced Foxp3+ regulatory T cells prevent autoimmunity by inhibiting dendritic cells from activating autoreactive T cells. J Immunol 179:4685–4693

    CAS  PubMed  Google Scholar 

  36. Fantini MC, Becker C, Tubbe I, Nikolaev A, Lehr HA, Galle P, Neurath MF (2006) Transforming growth factor beta induced FoxP3+ regulatory T cells suppress Th1 mediated experimental colitis. Gut 55:671–680

    Article  CAS  PubMed  Google Scholar 

  37. Nguyen TL, Sullivan NL, Ebel M, Teague RM, Dipaolo RJ (2011) Antigen-specific TGF-{beta}-induced regulatory T cells secrete chemokines, regulate T cell trafficking, and suppress ongoing autoimmunity. J Immunol 187:1745–1753

    Article  CAS  PubMed  Google Scholar 

  38. Selvaraj RK, Geiger TL (2008) Mitigation of experimental allergic encephalomyelitis by TGF-beta induced Foxp3+ regulatory T lymphocytes through the induction of anergy and infectious tolerance. J Immunol 180:2830–2838

    CAS  PubMed  Google Scholar 

  39. Weber SE, Harbertson J, Godebu E, Mros GA, Padrick RC, Carson BD, Ziegler SF, Bradley LM (2006) Adaptive islet-specific regulatory CD4 T cells control autoimmune diabetes and mediate the disappearance of pathogenic Th1 cells in vivo. J Immunol 176:4730–4739

    CAS  PubMed  Google Scholar 

  40. Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA (2004) Natural and induced CD4+ CD25+ cells educate CD4 + CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol 172:5213–5221

    CAS  PubMed  Google Scholar 

  41. Zheng SG, Wang JH, Koss MN, Quismorio F Jr, Gray JD, Horwitz DA (2004) CD4+ and CD8+ regulatory T cells generated ex vivo with IL-2 and TGF-beta suppress a stimulatory graft-versus-host disease with a lupus-like syndrome. J Immunol 172:1531–1539

    CAS  PubMed  Google Scholar 

  42. Zheng SG, Gray JD, Ohtsuka K, Yamagiwa S, Horwitz DA (2002) Generation ex vivo of TGF-beta-producing regulatory T cells from CD4 + CD25- precursors. J Immunol 169:4183–4189

    CAS  PubMed  Google Scholar 

  43. Pot C, Apetoh L, Kuchroo VK (2011) Type 1 regulatory T cells (Tr1) in autoimmunity. Semin Immunol 23(3):202–208

    Article  CAS  PubMed  Google Scholar 

  44. Yu SL, Wong CK, Wong PT, Chen DP, Szeto CC, Li EK, Tam LS (2011) Down-regulated NOD2 by immunosuppressants in peripheral blood cells in patients with SLE reduces the muramyl dipeptide-induced IL-10 production. PLoS One 6:e23855

    Article  CAS  PubMed  Google Scholar 

  45. Yamagiwa S, Gray JD, Hashimoto S, Horwitz DA (2001) A role for TGF-beta in the generation and expansion of CD4 + CD25+ regulatory T cells from human peripheral blood. J Immunol 166:7282–7289

    CAS  PubMed  Google Scholar 

  46. Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF (2004) Cutting edge: TGF-beta induces a regulatory phenotype in CD4 + CD25- T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 172:5149–5153

    CAS  PubMed  Google Scholar 

  47. Liang S, Alard P, Zhao Y, Parnell S, Clark SL, Kosiewicz MM (2005) Conversion of CD4+ CD25- cells into CD4+ CD25+ regulatory T cells in vivo requires B7 costimulation, but not the thymus. J Exp Med 201:127–137

    Article  CAS  PubMed  Google Scholar 

  48. Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, Bluestone JA (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4 + CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12:431–440

    Article  CAS  PubMed  Google Scholar 

  49. Piccirillo CA, Letterio JJ, Thornton AM, McHugh RS, Mamura M, Mizuhara H, Shevach EM (2002) CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J Exp Med 196:237–246

    Article  CAS  PubMed  Google Scholar 

  50. Liu Y, Zhang P, Li J, Kulkarni AB, Perruche S, Chen W (2008) A critical function for TGF-beta signaling in the development of natural CD4 + CD25 + Foxp3+ regulatory T cells. Nat Immunol 9:632–640

    Article  CAS  PubMed  Google Scholar 

  51. Marie JC, Letterio JJ, Gavin M, Rudensky AY (2005) TGF-beta1 maintains suppressor function and Foxp3 expression in CD4 + CD25+ regulatory T cells. J Exp Med 201:1061–1067

    Article  CAS  PubMed  Google Scholar 

  52. Lu L, Ma J, Wang X, Wang J, Zhang F, Yu J, He G, Xu B, Brand DD, Horwitz DA et al (2010) Synergistic effect of TGF-beta superfamily members on the induction of Foxp3+ Treg. Eur J Immunol 40:142–152

    Article  CAS  PubMed  Google Scholar 

  53. Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA (2007) IL-2 is essential for TGF-beta to convert naive CD4 + CD25- cells to CD25 + Foxp3+ regulatory T cells and for expansion of these cells. J Immunol 178:2018–2027

    CAS  PubMed  Google Scholar 

  54. Zheng SG, Wang JH, Stohl W, Kim KS, Gray JD, Horwitz DA (2006) TGF-beta requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4 + CD25+ regulatory cells. J Immunol 176:3321–3329

    CAS  PubMed  Google Scholar 

  55. Read S, Greenwald R, Izcue A, Robinson N, Mandelbrot D, Francisco L, Sharpe AH, Powrie F (2006) Blockade of CTLA-4 on CD4 + CD25+ regulatory T cells abrogates their function in vivo. J Immunol 177:4376–4383

    CAS  PubMed  Google Scholar 

  56. So T, Croft M (2007) Cutting edge: OX40 inhibits TGF-beta- and antigen-driven conversion of naive CD4 T cells into CD25 + Foxp3+ T cells. J Immunol 179:1427–1430

    CAS  PubMed  Google Scholar 

  57. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238

    Article  CAS  PubMed  Google Scholar 

  58. Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441:231–234

    Article  CAS  PubMed  Google Scholar 

  59. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179–189

    Article  CAS  PubMed  Google Scholar 

  60. Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M, Kuchroo VK, Hafler DA (2008) IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 454:350–352

    Article  CAS  PubMed  Google Scholar 

  61. Bettelli E, Sullivan B, Szabo SJ, Sobel RA, Glimcher LH, Kuchroo VK (2004) Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J Exp Med 200:79–87

    Article  CAS  PubMed  Google Scholar 

  62. Ferber IA, Brocke S, Taylor-Edwards C, Ridgway W, Dinisco C, Steinman L, Dalton D, Fathman CG (1996) Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol 156:5–7

    CAS  PubMed  Google Scholar 

  63. Heremans H, Dillen C, Groenen M, Martens E, Billiau A (1996) Chronic relapsing experimental autoimmune encephalomyelitis (CREAE) in mice: enhancement by monoclonal antibodies against interferon-gamma. Eur J Immunol 26:2393–2398

    Article  CAS  PubMed  Google Scholar 

  64. Kageyama Y, Koide Y, Yoshida A, Uchijima M, Arai T, Miyamoto S, Ozeki T, Hiyoshi M, Kushida K, Inoue T (1998) Reduced susceptibility to collagen-induced arthritis in mice deficient in IFN-gamma receptor. J Immunol 161:1542–1548

    CAS  PubMed  Google Scholar 

  65. Manoury-Schwartz B, Chiocchia G, Bessis N, Abehsira-Amar O, Batteux F, Muller S, Huang S, Boissier MC, Fournier C (1997) High susceptibility to collagen-induced arthritis in mice lacking IFN-gamma receptors. J Immunol 158:5501–5506

    CAS  PubMed  Google Scholar 

  66. Vermeire K, Heremans H, Vandeputte M, Huang S, Billiau A, Matthys P (1997) Accelerated collagen-induced arthritis in IFN-gamma receptor-deficient mice. J Immunol 158:5507–5513

    CAS  PubMed  Google Scholar 

  67. Lubberts E, Koenders MI, Oppers-Walgreen B, van den Bersselaar L, Coenen-de Roo CJ, Joosten LA, van den Berg WB (2004) Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum 50:650–659

    Article  CAS  PubMed  Google Scholar 

  68. Zhang Z, Zheng M, Bindas J, Schwarzenberger P, Kolls JK (2006) Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflamm Bowel Dis 12:382–388

    Article  PubMed  Google Scholar 

  69. Voo KS, Wang YH, Santori FR, Boggiano C, Arima K, Bover L, Hanabuchi S, Khalili J, Marinova E, Zheng B et al (2009) Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci U S A 106:4793–4798

    Article  CAS  PubMed  Google Scholar 

  70. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, Pin JJ, Garrone P, Garcia E, Saeland S et al (1996) T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 183:2593–2603

    Article  CAS  PubMed  Google Scholar 

  71. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655–669

    Article  CAS  PubMed  Google Scholar 

  72. Zheng W, Flavell RA (1997) The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89:587–596

    Article  CAS  PubMed  Google Scholar 

  73. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133

    Article  CAS  PubMed  Google Scholar 

  74. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    Article  CAS  PubMed  Google Scholar 

  75. Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL (2003) Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278:1910–1914

    Article  CAS  PubMed  Google Scholar 

  76. Besnard AG, Togbe D, Couillin I, Tan Z, Zheng SG, Erard F, Le Bert M, Quesniaux V, Ryffel B (2011) Inflammasome-IL-1-Th17 response in allergic lung inflammation. J Mol Cell Biol 4(1):3–10

    Article  PubMed  Google Scholar 

  77. Davidson TS, DiPaolo RJ, Andersson J, Shevach EM (2007) Cutting edge: IL-2 is essential for TGF-beta-mediated induction of Foxp3+ T regulatory cells. J Immunol 178:4022–4026

    CAS  PubMed  Google Scholar 

  78. Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z, Yao Z, Blank RB, Meylan F, Siegel R, Hennighausen L et al (2007) Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26:371–381

    Article  CAS  PubMed  Google Scholar 

  79. Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP, Shah B, Chang SH, Schluns KS, Watowich SS et al (2008) Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29:44–56

    Article  CAS  PubMed  Google Scholar 

  80. Singh SP, Zhang HH, Foley JF, Hedrick MN, Farber JM (2008) Human T cells that are able to produce IL-17 express the chemokine receptor CCR6. J Immunol 180:214–221

    CAS  PubMed  Google Scholar 

  81. Afzali B, Mitchell P, Lechler RI, John S, Lombardi G (2010) Translational mini-review series on Th17 cells: induction of interleukin-17 production by regulatory T cells. Clin Exp Immunol 159:120–130

    Article  CAS  PubMed  Google Scholar 

  82. Ayyoub M, Deknuydt F, Raimbaud I, Dousset C, Leveque L, Bioley G, Valmori D (2009) Human memory FOXP3+ Tregs secrete IL-17 ex vivo and constitutively express the T(H)17 lineage-specific transcription factor RORgamma t. Proc Natl Acad Sci U S A 106:8635–8640

    Article  CAS  PubMed  Google Scholar 

  83. Moon HG, Tae YM, Kim YS, Gyu Jeon S, Oh SY, Song Gho Y, Zhu Z, Kim YK (2010) Conversion of Th17-type into Th2-type inflammation by acetyl salicylic acid via the adenosine and uric acid pathway in the lung. Allergy 65:1093–1103

    CAS  PubMed  Google Scholar 

  84. Feng T, Cao AT, Weaver CT, Elson CO, Cong Y (2011) Interleukin-12 converts Foxp3+ regulatory T cells to interferon-gamma-producing Foxp3+ T cells that inhibit colitis. Gastroenterology 140:2031–2043

    Article  CAS  PubMed  Google Scholar 

  85. Mathur AN, Chang HC, Zisoulis DG, Kapur R, Belladonna ML, Kansas GS, Kaplan MH (2006) T-bet is a critical determinant in the instability of the IL-17-secreting T-helper phenotype. Blood 108:1595–1601

    Article  CAS  PubMed  Google Scholar 

  86. Panzer M, Sitte S, Wirth S, Drexler I, Sparwasser T, Voehringer D (2011) Rapid in vivo conversion of effector T cells into Th2 cells during helminth infection. J Immunol 188(2):615–623

    Article  PubMed  Google Scholar 

  87. Cohen CJ, Crome SQ, Macdonald KG, Dai EL, Mager DL, Levings MK (2011) Human Th1 and th17 cells exhibit epigenetic stability at signature cytokine and transcription factor loci. J Immunol 187:5615–5626

    Article  CAS  PubMed  Google Scholar 

  88. O’Connor RA, Leech MD, Suffner J, Hammerling GJ, Anderton SM (2010) Myelin-reactive, TGF-beta-induced regulatory T cells can be programmed to develop Th1-like effector function but remain less proinflammatory than myelin-reactive Th1 effectors and can suppress pathogenic T cell clonal expansion in vivo. J Immunol 185:7235–7243

    Article  PubMed  Google Scholar 

  89. Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, Schlawe K, Chang HD, Bopp T, Schmitt E et al (2007) Epigenetic control of the Foxp3 locus in regulatory T cells. PLoS Biol 5:e38

    Article  PubMed  Google Scholar 

  90. Chen Q, Kim YC, Laurence A, Punkosdy GA, Shevach EM (2011) IL-2 controls the stability of Foxp3 expression in TGF-beta-induced Foxp3+ T cells in vivo. J Immunol 186:6329–6337

    Article  CAS  PubMed  Google Scholar 

  91. Koenecke C, Czeloth N, Bubke A, Schmitz S, Kissenpfennig A, Malissen B, Huehn J, Ganser A, Forster R, Prinz I (2009) Alloantigen-specific de novo-induced Foxp3+ Treg revert in vivo and do not protect from experimental GVHD. Eur J Immunol 39:3091–3096

    Article  CAS  PubMed  Google Scholar 

  92. Lu L, Ma J, Li Z, Lan Q, Chen M, Liu Y, Xia Z, Wang J, Han Y, Shi W et al (2011) All-trans retinoic acid promotes TGF-beta-induced Tregs via histone modification but not DNA demethylation on Foxp3 gene locus. PLoS One 6:e24590

    Article  CAS  PubMed  Google Scholar 

  93. Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O’Connor E et al (2008) T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U S A 105:7797–7802

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was in part supported by grants from the NIH R01 AR 059103, NIH R43 AR 084359, Arthritis Foundation; Wright Foundation; the Arthritis National Research Foundation; the Clinical Research Feasibility Fund; the James H. Zumberge Faculty Research and Innovation Fund; the Outstanding Youth Scientist Investigator Award from National Nature Science Foundation of China (30728007); Science and Technology Committee Project of Shanghai Pudong New Area (PKJ2009-Y41), and the American College of Rheumatology Research and Education’s Within Our Reach: Finding a Cure for Rheumatoid Arthritis campaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Guo Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Zheng, S.G. (2013). Regulatory T cells Versus Th17: Differentiation of Th17 Versus Treg, Are They Mutually Exclusive?. In: Quesniaux, V., Ryffel, B., Padova, F. (eds) IL-17, IL-22 and Their Producing Cells: Role in Inflammation and Autoimmunity. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0348-0522-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0522-3_6

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0521-6

  • Online ISBN: 978-3-0348-0522-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics