Skip to main content

Abstract

Th17 cells have emerged as a crucial T helper effector subset in various pathological conditions including autoimmune diseases. The type and the amount of antigens as well as the degree of activation of various pattern recognition receptors (PRRs) determine the quality of the response of antigen-presenting cells (APCs), which influence the generation of induced T regulatory (iTreg) cells or of effector T cells. Properly activated dendritic cells (DCs) can secrete cytokines such as IL-1β, IL-6, and IL-23 which direct the generation of Th17 cells over iTreg cells. Moreover, DCs are fully equipped only for the generation of Th17 effector cells. For the generation of Th1 and Th2 effector cells, the involvement of other cell types is often required. NKT cells contribute IFN-γ for the generation of Th1 effector cells, while basophils and other cell types facilitate the generation of Th2 cells by providing IL-4. In addition, available data suggest that Th17 cells are often activated also in responses to intracellular pathogens and parasites, which are considered typical Th1 and Th2 responses. There is flexibility in the immune response and inflammatory cytokines, such as IL-1β, can convert iTreg cells into Th17 cells, and IFN-γ and IL-23 or IL-4 might act on Th17 cells to convert them into populations of cells able to secrete both IL-17A and IFN-γ or IL-17A and IL-4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54:1–13

    Article  PubMed  CAS  Google Scholar 

  2. van de Veerdonk FL, Kullberg BJ, van der Meer JWM, Gow NAR, Netea MG (2008) Host–microbe interactions: innate pattern recognition of fungal pathogens. Curr Opin Microbiol 11:305–312

    Article  PubMed  CAS  Google Scholar 

  3. Gommerman JL, Summers deLuca L (2011) LTbetaR and CD40: working together in dendritic cells to optimize immune responses. Immunol Rev 244:85–98

    Article  PubMed  CAS  Google Scholar 

  4. Diehl S, Rincón M (2002) The two faces of IL-6 on Th1/Th2 differentiation. Mol Immunol 39:531–536

    Article  PubMed  CAS  Google Scholar 

  5. Dumitriu IE, Dunbar DR, Howie SE, Sethi T, Gregory CD (2009) Human dendritic cells produce TGF-beta1 under the influence of lung carcinoma cells and prime the differentiation of CD4 + CD25 + Foxp3+ regulatory T cells. J Immunol 182:2795–2807

    Article  PubMed  CAS  Google Scholar 

  6. Gutcher I, Becher B (2007) APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Invest 117:1119–1127

    Article  PubMed  CAS  Google Scholar 

  7. Torri A, Beretta O, Ranghetti A, Granucci F, Ricciardi-Castagnoli P, Foti M (2010) Gene expression profiles identify inflammatory signatures in dendritic cells. PLoS One 5:e9404

    Article  PubMed  CAS  Google Scholar 

  8. Sprent J, Cho JH, Boyman O, Surh CD (2008) T cell homeostasis. Immunol Cell Biol 86:312–319

    Article  PubMed  CAS  Google Scholar 

  9. Surh CD, Sprent J (2008) Homeostasis of naïve and memory T cells. Immunity 29:848–862

    Article  PubMed  CAS  Google Scholar 

  10. Takada K, Jameson SC (2009) Naïve T cell homeostasis: from awareness of space to a sense of place. Nat Rev Immunol 9:823–832

    Article  PubMed  CAS  Google Scholar 

  11. Chicz RM, Urban RG, Gorga JC, Vignali DA, Lane WS, Strominger JL (1993) Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J Exp Med 178:27–47

    Article  PubMed  CAS  Google Scholar 

  12. Lechler R, Aichinger G, Lightstone L (1996) The endogenous pathway of MHC class II antigen presentation. Immunol Rev 151:51–79

    Article  PubMed  CAS  Google Scholar 

  13. van Haren SD, Herczenik E, ten Brinke A, Mertens K, Voorberg J, Meijer AB (2011) HLA-DR-presented peptide repertoires derived from human monocyte-derived dendritic cells pulsed with blood coagulation factor VIII. Mol Cell Proteomics 10:M110.002246

    Article  PubMed  CAS  Google Scholar 

  14. Neefjes J, Jongsma ML, Paul P, Bakke O (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11:823–836

    PubMed  CAS  Google Scholar 

  15. Sharpe AH (2009) Mechanisms of costimulation. Immunol Rev 229:5–11

    Article  PubMed  CAS  Google Scholar 

  16. Torgerson TR, Ochs HD (2007) Immune dysregulation, polyendocrinopathy, enteropathy, X-linked: forkhead box protein 3 mutations and lack of regulatory T cells. J Allergy Clin Immunol 120:744–750

    Article  PubMed  CAS  Google Scholar 

  17. Mosmann TR, Coffman RL (1989) Th1 and Th2: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7:145–173

    Article  PubMed  CAS  Google Scholar 

  18. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin-17 producing CD4 effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132

    Article  PubMed  CAS  Google Scholar 

  19. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin-17. Nat Immunol 6:1133–1141

    Article  PubMed  CAS  Google Scholar 

  20. Hall BM, Verma ND, Tran GT, Hodgkinson SJ (2011) Distinct regulatory CD4 + T cell subsets; differences between naïve and antigen specific T regulatory cells. Curr Opin Immunol 23:641–647

    Article  PubMed  CAS  Google Scholar 

  21. Palm NW, Medzhitov R (2009) Pattern recognition receptors and control of adaptive immunity. Immunol Rev 227:221–233

    Article  PubMed  CAS  Google Scholar 

  22. Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327:291–295

    Article  PubMed  CAS  Google Scholar 

  23. Taniguchi M, Tashiro T, Dashtsoodol N, Hongo N, Watarai H (2010) The specialized iNKT cell system recognizes glycolipid antigens and bridges the innate and acquired immune systems with potential applications for cancer therapy. Int Immunol 22:1–6

    Article  PubMed  CAS  Google Scholar 

  24. Kaiko GE, Foster PS (2011) New insights into the generation of Th2 immunity and potential therapeutic targets for the treatment of asthma. Curr Opin Allergy Clin Immunol 11:39–45

    Article  PubMed  CAS  Google Scholar 

  25. Oliphant CJ, Barlow JL, McKenzie AN (2011) Insights into the initiation of type 2 immune responses. Immunology 134:378–385

    Article  PubMed  CAS  Google Scholar 

  26. Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, Shen Y, Du J, Rubtsov YP, Rudensky AY et al (2008) TGFbeta-induced Foxp3 inhibits Th17 cell differentiation by antagonizing RORgammat function. Nature 453:236–240

    Article  PubMed  CAS  Google Scholar 

  27. Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP, Shah B, Chang SH, Schluns KS, Watowich SS et al (2008) Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29:44–56

    Article  PubMed  CAS  Google Scholar 

  28. Piggott DA, Eisenbarth SC, Xu L, Constant SL, Huleatt JW, Herrick CA, Bottomly K (2005) MyD88-dependent induction of allergic Th2 responses to intranasal antigen. J Clin Invest 115:459–467

    PubMed  CAS  Google Scholar 

  29. Coombes JL, Siddiqui KR, Arancibia-Cárcamo CV, Hall J, Sun CM, Belkaid Y, Powrie F (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204:1757–1764

    Article  PubMed  CAS  Google Scholar 

  30. Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, Belkaid Y (2007) Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 204:1775–1785

    Article  PubMed  CAS  Google Scholar 

  31. Li J, Hsu HC, Yang P, Wu Q, Li H, Edgington LE, Bogyo M, Kimberly RP, Mountz JD (2011) Treatment of arthritis by macrophage depletion and immunomodulation: testing an apoptosis-mediated therapy in a humanized death receptor mouse model. Arthritis Rheum 64:1098–1109

    Article  PubMed  CAS  Google Scholar 

  32. Bluestone JA, Abbas AK (2003) Natural versus adaptive regulatory T cells. Nat Rev Immunol 3:253–257

    Article  PubMed  CAS  Google Scholar 

  33. Curotto de Lafaille MA, Lafaille JJ (2009) Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30:626–635

    Article  PubMed  CAS  Google Scholar 

  34. Chen X, Oppenheim JJ (2011) Resolving the identity myth: key markers of functional CD4+ FoxP3+ regulatory T cells. Int Immunopharmacol 11:1489–1496

    Article  PubMed  CAS  Google Scholar 

  35. Horwitz DA, Zheng SG, Gray JD (2008) Natural and TGF-beta induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other. Trends Immunol 29:429–435

    Article  PubMed  CAS  Google Scholar 

  36. Gottschalk RA, Corse E, Allison JP (2012) Expression of helios in peripherally induced Foxp3+ regulatory T cells. J Immunol 188:976–980

    Article  PubMed  CAS  Google Scholar 

  37. Rubtsov YP, Niec RE, Josefowicz S, Li L, Darce J, Mathis D, Benoist C, Rudensky AY (2010) Stability of the regulatory T cell lineage in vivo. Science 329:1667–1671

    Article  PubMed  CAS  Google Scholar 

  38. Borges TJ, Porto BN, Teixeira CA, Rodrigues M, Machado FD, Ornaghi AP, de Souza AP, Maito F, Pavanelli WR, Silva JS et al (2010) Prolonged survival of allografts induced by mycobacterial Hsp70 is dependent on CD4 + CD25+ regulatory T cells. PLoS One 5:e14264

    Article  PubMed  CAS  Google Scholar 

  39. Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, von Boehmer H (2005) Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 6:1219–1227

    Article  PubMed  CAS  Google Scholar 

  40. Zhang X, Li M, Lian D, Zheng X, Zhang ZX, Ichim TE, Xia X, Huang X, Vladau C, Suzuki M et al (2008) Generation of therapeutic dendritic cells and regulatory T cells for preventing allogeneic cardiac graft rejection. Clin Immunol 127:313–321

    Article  PubMed  CAS  Google Scholar 

  41. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2005) Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24:99–146

    Article  CAS  Google Scholar 

  42. Zhu J, Paul WE (2008) CD4 T cells: fates, functions, and faults. Blood 112:1557–1569

    Article  PubMed  CAS  Google Scholar 

  43. Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z, Yao Z, Blank RB, Meylan F, Siegel R, Hennighausen L et al (2007) Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26:371–381

    Article  PubMed  CAS  Google Scholar 

  44. Nolting J, Daniel C, Reuter S, Stuelten C, Li P, Sucov H, Kim BG, Letterio JJ, Kretschmer K, Kim HJ et al (2009) Retinoic acid can enhance conversion of naive into regulatory T cells independently of secreted cytokines. J Exp Med 206:2131–2139

    Article  PubMed  CAS  Google Scholar 

  45. Chambers ES, Hawrylowicz CM (2011) The impact of vitamin D on regulatory T cells. Curr Allergy Asthma Rep 11:29–36

    Article  PubMed  CAS  Google Scholar 

  46. Singh NP, Singh UP, Singh B, Price RL, Nagarkatti M, Nagarkatti PS (2011) Activation of aryl hydrocarbon receptor (AhR) leads to reciprocal epigenetic regulation of FoxP3 and IL-17 expression and amelioration of experimental colitis. PLoS One 6:e23522

    Article  PubMed  CAS  Google Scholar 

  47. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL (2008) Control of T(reg) and Th17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71

    Article  PubMed  CAS  Google Scholar 

  48. Barthlott T, Moncrieffe H, Veldhoen M, Atkins CJ, Christensen J, O’Garra A, Stockinger B (2005) CD25+ CD4+ T cells compete with naive CD4+ T cells for IL-2 and exploit it for the induction of IL-10 production. Int Immunol 17:279–288

    Article  PubMed  CAS  Google Scholar 

  49. Stockinger B (2007) Good for Goose, but not for Gander: IL-2 interferes with Th17 differentiation. Immunity 26:278–279

    Article  PubMed  CAS  Google Scholar 

  50. Pandiyan P, Conti HR, Zheng L, Peterson AC, Mathern DR, Hernández-Santos N, Edgerton M, Gaffen SL, Lenardo MJ (2011) CD4(+)CD25(+)Foxp3(+) regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model. Immunity 34:422–434

    Article  PubMed  CAS  Google Scholar 

  51. Chen Y, Haines CJ, Gutcher I, Hochweller K, Blumenschein WM, McClanahan T, Hämmerling G, Li MO, Cua DJ, McGeachy MJ (2011) Foxp3(+) regulatory T cells promote T helper 17 cell development in vivo through regulation of interleukin-2. Immunity 34:409–421

    Article  PubMed  CAS  Google Scholar 

  52. Zhou L, Chong MM, Littman DR (2009) Plasticity of CD4+ T cell lineage differentiation. Immunity 30:646–655

    Article  PubMed  CAS  Google Scholar 

  53. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179–189

    Article  PubMed  CAS  Google Scholar 

  54. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238

    Article  PubMed  CAS  Google Scholar 

  55. McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, Cua DJ (2007) TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain Th-17 cell-mediated pathology. Nat Immunol 8:1390–1397

    Article  PubMed  CAS  Google Scholar 

  56. Liu X, Leung S, Wang C, Tan Z, Wang J, Guo TB, Fang L, Zhao Y, Wan B, Qin X et al (2010) Crucial role of interleukin-7 in T helper type 17 survival and expansion in auto-immune disease. Nat Med 16:191–197

    Article  PubMed  CAS  Google Scholar 

  57. Korn T, Bettelli E, Gao W, Awasthi A, Jäger A, Strom TB, Oukka M, Kuchroo VK (2007) IL-21 initiates an alternative pathway to induce proinflammatory Th17 cells. Nature 448:484–487

    Article  PubMed  CAS  Google Scholar 

  58. Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD, Ma L, Schluns K, Tian Q, Watowich SS, Jetten AM et al (2007) Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448:480–483

    Article  PubMed  CAS  Google Scholar 

  59. Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T, Levy DE, Leonard WJ, Littman DR (2007) IL-6 programs Th-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8:967–974

    Article  PubMed  CAS  Google Scholar 

  60. Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL (2003) Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278:1910–1914

    Article  PubMed  CAS  Google Scholar 

  61. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    Article  PubMed  CAS  Google Scholar 

  62. Kleinschek MA, Owyang AM, Joyce-Shaikh B, Langrish CL, Chen Y, Gorman DM, Blumenschein WM, McClanahan T, Brombacher F, Hurst SD et al (2007) IL-25 regulates Th17 function in autoimmune inflammation. J Exp Med 204:161–170

    Article  PubMed  CAS  Google Scholar 

  63. Stumhofer JS, Laurence A, Wilson EH, Huang E, Tato CM, Johnson LM, Villarino AV, Huang Q, Yoshimura A, Sehy D et al (2006) Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol 7:937–945

    Article  PubMed  CAS  Google Scholar 

  64. Infante-Duarte C, Horton HF, Byrne MC, Kamradt T (2000) Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol 165:6107–6115

    PubMed  CAS  Google Scholar 

  65. Nakae S, Iwakura Y, Suto H, Galli SJ (2007) Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. J Leukoc Biol 81:1258–1268

    Article  PubMed  CAS  Google Scholar 

  66. Liang SC, Long AJ, Bennett F, Whitters MJ, Karim R, Collins M, Goldman SJ, Dunussi-Joannopoulos K, Williams CMM, Wright JF et al (2007) An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J Immunol 179:7791–7799

    PubMed  CAS  Google Scholar 

  67. Yang XO, Chang SH, Park H, Nurieva R, Shah B, Acero L, Wang YH, Schluns KS, Broaddus RR, Zhu Z et al (2008) Regulation of inflammatory responses by IL-17F. J Exp Med 205:1063–1075

    Article  PubMed  CAS  Google Scholar 

  68. Lee YK, Turner H, Maynard CL, Oliver JR, Chen D, Elson CO, Weaver CT (2009) Late developmental plasticity in the T helper 17 lineage. Immunity 30:92–107

    Article  PubMed  CAS  Google Scholar 

  69. Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y, Ma L, Shah B, Panopoulos AD, Schluns KS et al (2008) T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 28:29–39

    Article  PubMed  CAS  Google Scholar 

  70. Gomez-Rodriguez J, Sahu N, Handon R, Davidson TS, Anderson SM, Kirby MR, August A, Schwartzberg PL (2009) Differential expression of interleukin-17A and -17F is coupled to T cell receptor signaling via inducible T cell kinase. Immunity 31:587–597

    Article  PubMed  CAS  Google Scholar 

  71. Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, Ouyang W (2007) Interleukin-22, a Th17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445:648–651

    Article  PubMed  CAS  Google Scholar 

  72. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, Fouser LA (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203:2271–2279

    Article  PubMed  CAS  Google Scholar 

  73. Yamazaki T, Yang XO, Chung Y, Fukunaga A, Nurieva R, Pappu B, Martin-Orozco N, Kang HS, Ma L, Panopoulos AD et al (2008) CCR6 regulates the migration of inflammatory and regulatory T cells. J Immunol 181:8391–8401

    PubMed  CAS  Google Scholar 

  74. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, Tanaka S, Kodama T, Akira S, Iwakura Y et al (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203:2673–2682

    Article  PubMed  CAS  Google Scholar 

  75. Peters A, Pitcher LA, Sullivan JM, Mitsdoerffer M, Acton SE, Franz B, Wucherpfennig K, Turley S, Carroll MC, Sobel RA et al (2011) Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity 35:986–996

    Article  PubMed  CAS  Google Scholar 

  76. Page G, Miossec P (2005) RANK and RANKL expression as markers of dendritic cell–T cell interactions in paired samples of rheumatoid synovium and lymph nodes. Arthritis Rheum 52:2307–2312

    Article  PubMed  CAS  Google Scholar 

  77. Maggi L, Santarlasci V, Capone M, Peired A, Frosali F, Crome SQ, Querci V, Fambrini M, Liotta F, Levings MK et al (2010) CD161 is a marker of all human IL-17-producing T-cell subsets and is induced by RORC. Eur J Immunol 40:2174–2181

    Article  PubMed  CAS  Google Scholar 

  78. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27:485–517

    Article  PubMed  CAS  Google Scholar 

  79. Huber S, Gagliani N, Esplugues E, O’Connor W Jr, Huber FJ, Chaudhry A, Kamanaka M, Kobayashi Y, Booth CJ, Rudensky AY et al (2011) Th17 cells express interleukin-10 receptor and are controlled by Foxp3 and Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent manner. Immunity 34:554–565

    Article  PubMed  CAS  Google Scholar 

  80. Cho ML, Kang JW, Moon YM, Nam HJ, Jhun JY, Heo SB, Jin HT, Min SY, Ju JH, Park KS et al (2006) STAT3 and NF-kappaB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice. J Immunol 176:5652–5661

    PubMed  CAS  Google Scholar 

  81. Wei G, Wei L, Zhu J, Zang C, Hu-Li J, Yao Z, Cui K, Kanno Y, Roh TY, Watford WT et al (2009) Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30:155–167

    Article  PubMed  CAS  Google Scholar 

  82. Akimzhanov AM, Yang XO, Dong C (2007) Chromatin remodeling of interleukin-17 (IL-17)-IL-17F cytokine gene locus during inflammatory helper T cell differentiation. J Biol Chem 282:5969–5972

    Article  PubMed  CAS  Google Scholar 

  83. Janson PC, Linton LB, Bergman EA, Marits P, Eberhardson M, Piehl F, Malmström V, Winqvist O (2011) Profiling of CD4+ T cells with epigenetic immune lineage analysis. J Immunol 186:92–102

    Article  PubMed  CAS  Google Scholar 

  84. Valmori D, Merlo A, Souleimanian NE, Hesdorffer CS, Ayyoub M (2005) A peripheral circulating compartment of natural naive CD4 Tregs. J Clin Invest 115:1953–1962

    Article  PubMed  CAS  Google Scholar 

  85. Ayyoub M, Deknuydt F, Raimbaud I, Dousset C, Leveque L, Bioley G, Valmori D (2009) Human memory Foxp3+ Tregs secrete IL-17 ex vivo and constitutively express the Th17 lineage-specific transcription factor RORgammat. Proc Natl Acad Sci U S A 106:8635–8640

    Article  PubMed  CAS  Google Scholar 

  86. Voo KS, Wang YH, Santori FR, Boggiano C, Wang YH, Arima K, Bover L, Hanabuchi S, Khalili J, Marinova E et al (2009) Identification of IL-17-producing Foxp3+ regulatory T cells in humans. Proc Natl Acad Sci U S A 106:4793–4798

    Article  PubMed  CAS  Google Scholar 

  87. Xu L, Kitani A, Fuss I, Strober W (2007) Cutting edge: regulatory T cells induce CD4+ CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol 178:6725–6729

    PubMed  CAS  Google Scholar 

  88. Zheng SG, Wang J, Horwitz DA (2008) Cutting edge: Foxp3+ CD4+ CD25+ regulatory T cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. J Immunol 180:7112–7116

    PubMed  CAS  Google Scholar 

  89. Koenen HJ, Smeets RL, Vink PM, van Rijssen E, Boots AM, Joosten I (2008) Human CD25high Foxp3+ regulatory T cells differentiate into IL-17-producing cells. Blood 112:2340–2352

    Article  PubMed  CAS  Google Scholar 

  90. Deknuydt F, Bioley G, Valmori D, Ayyoub M (2009) IL-1beta and IL-2 convert human Treg into Th17 cells. Clin Immunol 131:298–307

    Article  PubMed  CAS  Google Scholar 

  91. Osorio F, LeibundGut-Landmann S, Lochner M, Lahl K, Sparwasser T, Eberl G, Reis e Sousa C (2008) DC activated via dectin-1 convert Treg into IL-17 producers. Eur J Immunol 38:3274–3281

    Article  PubMed  CAS  Google Scholar 

  92. Caretto D, Katzman SD, Villarino AV, Gallo E, Abbas AK (2010) Cutting edge: the Th1 response inhibits the generation of peripheral regulatory T cells. J Immunol 184:30–34

    Article  PubMed  CAS  Google Scholar 

  93. Lohr J, Knoechel B, Caretto D, Abbas AK (2009) Balance of Th1 and Th17 effector and peripheral regulatory T cells. Microbes Infect 11:589–593

    Article  PubMed  CAS  Google Scholar 

  94. Holland SM, DeLeo FR, Elloumi HZ, Hsu AP, Uzel G, Brodsky N, Freeman AF, Demidowich A, Davis J, Turner ML et al (2007) STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 357:1608–1619

    Article  PubMed  CAS  Google Scholar 

  95. Minegishi Y, Saito M, Tsuchiya S, Tsuge I, Takada H, Hara T, Kawamura N, Ariga T, Pasic S, Stojkovic O et al (2007) Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448:1058–1062

    Article  PubMed  CAS  Google Scholar 

  96. de Beaucoudrey L, Puel A, Filipe-Santos O, Cobat A, Ghandil P, Chrabieh M, Feinberg J, von Bernuth H, Samarina A, Jannière L et al (2008) Mutations in STAT3 and IL12RB1 impair the development of human IL-17–producing T cells. J Exp Med 205:1543–1550

    Article  PubMed  CAS  Google Scholar 

  97. Khader SA, Gopal R (2010) IL-17 in protective immunity to intracellular pathogens. Virulence 1:423–427

    Article  PubMed  Google Scholar 

  98. Pitta MG, Romano A, Cabantous S, Henri S, Hammad A, Kouriba B, Argiro L, el Kheir M, Bucheton B, Mary C et al (2009) IL-17 and IL-22 are associated with protection against human kala azar caused by Leishmania donovani. J Clin Invest 119:2379–2387

    PubMed  CAS  Google Scholar 

  99. Boaventura VS, Santos CS, Cardoso CR, de Andrade J, Dos Santos WL, Clarêncio J, Silva JS, Borges VM, Barral-Netto M, Brodskyn CI et al (2010) Human mucosal leishmaniasis: neutrophils infiltrate areas of tissue damage that express high levels of Th17-related cytokines. Eur J Immunol 40:2830–2836

    Article  PubMed  CAS  Google Scholar 

  100. Smith PM, Jacque B, Conner JR, Poltorak A, Stadecker MJ (2011) IRAK-2 regulates IL-1-mediated pathogenic Th17 cell development in helminthic infection. PLoS Pathog 7:e1002272

    Article  PubMed  CAS  Google Scholar 

  101. Sotillo J, Trelis M, Cortes A, Fried B, Marcilla A, Esteban JG, Toledo R (2011) Th17 responses in Echinostoma caproni infections in hosts of high and low compatibility. Exp Parasitol 129:307–311

    Article  PubMed  CAS  Google Scholar 

  102. Suryawanshi A, Veiga-Parga T, Rajasagi NK, Reddy PB, Sehrawat S, Sharma S, Rouse BT (2011) Role of IL-17 and Th17 cells in herpes simplex virus-induced corneal immunopathology. J Immunol 187:1919–1930

    Article  PubMed  CAS  Google Scholar 

  103. Niu Y, Liu H, Yin D, Yi R, Chen T, Xue H, Zhang S, Lin S, Zhao Y (2011) The balance between intrahepatic IL-17(+) T cells and Foxp3(+) regulatory T cells plays an important role in HBV-related end-stage liver disease. BMC Immunol 12:47

    Article  PubMed  CAS  Google Scholar 

  104. Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, Langer-Gould A, Strober S, Cannella B, Allard J et al (2002) Gene microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8:500–508

    Article  PubMed  CAS  Google Scholar 

  105. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, Basham B, Smith K, Chen T, Morel F et al (2007) Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8:950–957

    Article  PubMed  CAS  Google Scholar 

  106. Oboki K, Ohno T, Saito H, Nakae S (2008) Th17 and allergy. Allergol Int 57:121–134

    Article  PubMed  CAS  Google Scholar 

  107. Kang SA, Cho MK, Park MK, Kim DH, Hong YC, Lee YS, Cha HJ, Ock MS, Yu HS (2012) Alteration of helper T-cell related cytokine production in splenocytes during Trichinella spiralis infection. Vet Parasitol 186:319–327

    Article  PubMed  CAS  Google Scholar 

  108. Fu Y, Wang W, Tong J, Pan Q, Long Y, Qian W, Hou X (2009) Th17: a new participant in gut dysfunction in mice infected with Trichinella spiralis. Mediators Inflamm 2009:517052

    Article  PubMed  CAS  Google Scholar 

  109. Rutitzky LI, Stadecker MJ (2011) Exacerbated egg-induced immunopathology in murine Schistosoma mansoni infection is primarily mediated by IL-17 and restrained by IFN-gamma. Eur J Immunol 41:2677–2687

    Article  PubMed  CAS  Google Scholar 

  110. Katzman SD, Gallo E, Hoyer KK, Abbas AK (2011) Differential requirements for Th1 and Th17 responses to a systemic self-antigen. J Immunol 186:4668–4673

    Article  PubMed  CAS  Google Scholar 

  111. Dudeck A, Suender CA, Kostka SL, von Stebut E, Maurer M (2011) Mast cells promote Th1 and Th17 responses by modulating dendritic cell maturation and function. Eur J Immunol 41:1883–1893

    Article  PubMed  CAS  Google Scholar 

  112. Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146

    Article  PubMed  CAS  Google Scholar 

  113. Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB (2003) Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 4:1230–1237

    Article  PubMed  CAS  Google Scholar 

  114. de Wit MC, Horzinek MC, Haagmans BL, Schijns VE (2004) Host dependent type 1 cytokine responses driven by inactivated viruses may fail to default in the absence of IL-12 or IFN-alpha/beta. J Gen Virol 85:795–803

    Article  PubMed  CAS  Google Scholar 

  115. Oxenius A, Karrer U, Zinkernagel RM, Hengartner H (1999) IL-12 is not required for induction of type 1 cytokine responses in viral infections. J Immunol 162:965–973

    PubMed  CAS  Google Scholar 

  116. Schijns VE, Haagmans BL, Wierda CM, Kruithof B, Heijnen IA, Alber G, Horzinek MC (1998) Mice lacking IL-12 develop polarized Th1 cells during viral infection. J Immunol 160:3958–3964

    PubMed  CAS  Google Scholar 

  117. Dardalhon V, Korn T, Kuchroo VK, Anderson AC (2008) Role of Th1 and Th17 cells in organ-specific autoimmunity. J Autoimmun 31:252–256

    Article  PubMed  CAS  Google Scholar 

  118. Katzman SD, O’Gorman WE, Villarino AV, Gallo E, Friedman RS, Krummel MF, Nolan GP, Abbas AK (2010) Duration of antigen receptor signaling determines T-cell tolerance or activation. Proc Natl Acad Sci U S A 107:18085–18090

    Article  PubMed  CAS  Google Scholar 

  119. Lohr J, Knoechel B, Wang JJ, Villarino AV, Abbas AK (2006) Role of IL-17 and regulatory T lymphocytes in a systemic autoimmune disease. J Exp Med 203:2785–2791

    Article  PubMed  CAS  Google Scholar 

  120. Milner JD (2011) IL-17 producing cells in host defense and atopy. Curr Opin Immunol 23:784–788

    Article  PubMed  CAS  Google Scholar 

  121. Mou Z, Jia P, Kuriakose S, Khadem F, Uzonna JE (2010) Interleukin-17-mediated control of parasitemia in experimental Trypanosoma congolense infection in mice. Infect Immun 78:5271–5279

    Article  PubMed  CAS  Google Scholar 

  122. Krishnamoorthy N, Oriss TB, Paglia M, Fei M, Yarlagadda M, Vanhaesebroeck B, Ray A, Ray P (2008) Activation of c-Kit in dendritic cells regulates T helper cell differentiation and allergic asthma. Nat Med 14:565–573

    Article  PubMed  CAS  Google Scholar 

  123. Phipps S, Lam CE, Kaiko GE, Foo SY, Collison A, Mattes J, Barry J, Davidson S, Oreo K, Smith L et al (2009) Toll/IL-1 signaling is critical for house dust mite-specific helper T cell type 2 and type 17 [corrected] responses. Am J Respir Crit Care Med 179:883–893

    Article  PubMed  CAS  Google Scholar 

  124. Ng N, Lam D, Paulus P, Batzer G, Horner AA (2006) House dust extracts have both Th2 adjuvant and tolerogenic activities. J Allergy Clin Immunol 117:1074–1081

    Article  PubMed  CAS  Google Scholar 

  125. Min B, Brown MA, Legros G (2012) Understanding the roles of basophils: breaking dawn. Immunology 135:192–197

    Article  PubMed  CAS  Google Scholar 

  126. Liang HE, Reinhardt RL, Bando JK, Sullivan BM, Ho IC, Locksley RM (2011) Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity. Nat Immunol 13:58–66

    Article  PubMed  CAS  Google Scholar 

  127. Allen JE, Maizels RM (2011) Diversity and dialogue in immunity to helminths. Nat Rev Immunol 11:375–388

    Article  PubMed  CAS  Google Scholar 

  128. Sokol CL, Medzhitov R (2010) Role of basophils in the initiation of Th2 responses. Curr Opin Immunol 22:73–77

    Article  PubMed  CAS  Google Scholar 

  129. Sokol CL, Barton GM, Farr AG, Medzhitov R (2008) A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol 9:310–318

    Article  PubMed  CAS  Google Scholar 

  130. Perrigoue JG, Saenz SA, Siracusa MC, Allenspach EJ, Taylor BC, Giacomin PR, Nair MG, Du Y, Zaph C, van Rooijen N et al (2009) MHC class II-dependent basophil-CD4+ T cell interactions promote Th2 cytokine-dependent immunity. Nat Immunol 10:697–705

    Article  PubMed  CAS  Google Scholar 

  131. Sokol CL, Chu NQ, Yu S, Nish SA, Laufer TM, Medzhitov R (2009) Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol 10:713–720

    Article  PubMed  CAS  Google Scholar 

  132. Yoshimoto T, Yasuda K, Tanaka H, Nakahira M, Imai Y, Fujimori Y, Nakanishi K (2009) Basophils contribute to Th2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells. Nat Immunol 10:706–712

    Article  PubMed  CAS  Google Scholar 

  133. Tang H, Cao W, Kasturi SP, Ravindran R, Nakaya HI, Kundu K, Murthy N, Kepler TB, Malissen B, Pulendran B (2010) The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat Immunol 11:608–617

    Article  PubMed  CAS  Google Scholar 

  134. Finkelman FD, Morris SC, Orekhova T, Mori M, Donaldson D, Reiner SL, Reilly NL, Schopf L, Urban JF Jr (2000) Stat6 regulation of in vivo IL-4 responses. J Immunol 164:2303–2310

    PubMed  CAS  Google Scholar 

  135. Jankovic D, Kullberg MC, Noben-Trauth N, Caspar P, Paul WE, Sher A (2000) Single cell analysis reveals that IL-4 receptor/Stat6 signaling is not required for the in vivo or in vitro development of CD4+ lymphocytes with a Th2 cytokine profile. J Immunol 164:3047–3055

    PubMed  CAS  Google Scholar 

  136. Lexberg MH, Taubner A, Albrecht I, Lepenies I, Richter A, Kamradt T, Radbruch A, Chang HD (2010) IFN-gamma and IL-12 synergize to convert in vivo generated Th17 into Th1/Th17 cells. Eur J Immunol 40:3017–3027

    Article  PubMed  CAS  Google Scholar 

  137. Lexberg MH, Taubner A, Förster A, Albrecht I, Richter A, Kamradt T, Radbruch A, Chang HD (2008) Th memory for interleukin-17 expression is stable in vivo. Eur J Immunol 38:2654–2664

    Article  PubMed  CAS  Google Scholar 

  138. Mukasa R, Balasubramani A, Lee YK, Whitley SK, Weaver BT, Shibata Y, Crawford GE, Hatton RD, Weaver CT (2010) Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T helper 17 cell lineage. Immunity 32:616–627

    Article  PubMed  CAS  Google Scholar 

  139. Bending D, Newland S, Krejcí A, Phillips JM, Bray S, Cooke A (2011) Epigenetic changes at Il12rb2 and Tbx21 in relation to plasticity behavior of Th17 cells. J Immunol 186:3373–3382

    Article  PubMed  CAS  Google Scholar 

  140. Bending D, De la Peña H, Veldhoen M, Phillips JM, Uyttenhove C, Stockinger B, Cooke A (2009) Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J Clin Invest 119:565–572

    Article  PubMed  CAS  Google Scholar 

  141. Domingues HS, Mues M, Lassmann H, Wekerle H, Krishnamoorthy G (2010) Functional and pathogenic differences of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. PLoS One 5:e15531

    Article  PubMed  CAS  Google Scholar 

  142. Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y, Cua DJ, Ahlfors H, Wilhelm C, Tolaini M, Menzel U et al (2011) Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol 12:255–263

    Article  PubMed  CAS  Google Scholar 

  143. Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Filì L, Ferri S, Frosali F et al (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204:1849–1861

    Article  PubMed  CAS  Google Scholar 

  144. Nistala K, Adams S, Cambrook H, Ursu S, Olivito B, de Jager W, Evans JG, Cimaz R, Bajaj-Elliott M, Wedderburn LR (2010) Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment. Proc Natl Acad Sci USA 107:14751–14756

    Article  PubMed  CAS  Google Scholar 

  145. Cohen CJ, Crome SQ, Macdonald KG, Dai EL, Mager DL, Levings MK (2011) Human Th1 and Th17 cells exhibit epigenetic stability at signature cytokine and transcription factor loci. J Immunol 187:5615–5626

    Article  PubMed  CAS  Google Scholar 

  146. Kurschus FC, Croxford AL, Heinen AP, Wörtge S, Ielo D, Waisman A (2010) Genetic proof for the transient nature of the Th17 phenotype. Eur J Immunol 40:3336–3346

    Article  PubMed  CAS  Google Scholar 

  147. Wang YH, Voo KS, Liu B, Chen CY, Uygungil B, Spoede W, Bernstein JA, Huston DP, Liu YJ (2010) A novel subset of CD4(+) Th2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma. J Exp Med 207:2479–2491

    Article  PubMed  CAS  Google Scholar 

  148. Cosmi L, Maggi L, Santarlasci V, Capone M, Cardilicchia E, Frosali F, Querci V, Angeli R, Matucci A, Fambrini M et al (2010) Identification of a novel subset of human circulating memory CD4(+) T cells that produce both IL-17A and IL-4. J Allergy Clin Immunol 125:222–230

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Di Padova M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Di Padova, F., Ryffel, B., Quesniaux, V. (2013). Central Role of Th17 Cells in Adaptive Immune Responses. In: Quesniaux, V., Ryffel, B., Padova, F. (eds) IL-17, IL-22 and Their Producing Cells: Role in Inflammation and Autoimmunity. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0348-0522-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0522-3_5

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0521-6

  • Online ISBN: 978-3-0348-0522-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics