Skip to main content

Compositional Simulation-Based Analysis of AI-Based Autonomous Systems for Markovian Specifications

  • Conference paper
  • First Online:
Runtime Verification (RV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14245))

Included in the following conference series:

  • 458 Accesses

Abstract

We present a framework for the compositional simulation-based analysis of AI-based autonomous systems for Markovian safety specifications. Our compositional approach allows us to cut down the cost of executing a large number of long-running simulations, by decomposing a simulation-based analysis task into several shorter and more efficient ones. Results obtained from the individual analyses are then stitched together to generate a result for the overall simulation-based task. Our approach is based on a decomposition of scenarios formalized as concurrent hierarchical probabilistic extended state machines that describe sequential and parallel compositions of scenarios. We present two instantiations of our framework for falsification and statistical verification. Using case studies from the autonomous driving domain, we demonstrate the scalability of our compositional approach in comparison to a monolithic analysis approach.

This work is partially supported by NSF grants 1545126 (VeHICaL, including an NSF-TiH grant) and 1837132, by DARPA contracts FA8750-18-C-0101 (AA), FA8750-20-C-0156 (SDCPS), and FA8750-23-C-0080 (ANSR), by Berkeley Deep Drive, by C3DTI, and by Toyota under the iCyPhy center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For the full syntax of Scenic, see [11].

References

  1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model. Comput. Simul. 28(1), 1–39 (2018)

    Google Scholar 

  2. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis, C.: Multiple viewpoint contract-based specification and design. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 200–225. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92188-2_9

    Chapter  MATH  Google Scholar 

  3. Bhaduri, P., Ramesh, S.: Interface synthesis and protocol conversion. Form. Asp. Comput. 20(2), 205–224 (2008)

    Article  MATH  Google Scholar 

  4. Chilton, C., Jonsson, B., Kwiatkowska, M.Z.: Compositional assume-guarantee reasoning for input/output component theories. Sci. Comput. Program. 91, 115–137 (2014)

    Article  Google Scholar 

  5. Clarke, E.M., Long, D.E., McMillan, K.L.: Compositional model checking. In: Proceedings of the Fourth Annual Symposium on Logic in Computer Science (LICS 1989), Pacific Grove, California, USA, 5–8 June 1989, pp. 353–362. IEEE Computer Society (1989)

    Google Scholar 

  6. Cobleigh, J.M., Giannakopoulou, D., PĂsĂreanu, C.S.: Learning assumptions for compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36577-X_24

    Chapter  MATH  Google Scholar 

  7. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_27

    Chapter  Google Scholar 

  8. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical systems with machine learning components. J. Autom. Reason. 63(4), 1031–1053 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dreossi, T., et al.: VerifAI: a toolkit for the formal design and analysis of artificial intelligence-based systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 432–442. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_25

    Chapter  Google Scholar 

  10. Emmi, M., Giannakopoulou, D., Păsăreanu, C.S.: Assume-guarantee verification for interface automata. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 116–131. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68237-0_10

    Chapter  Google Scholar 

  11. Fremont, D.J., et al.: Scenic: a language for scenario specification and data generation. Mach. Learn. 112, 3805–3849 (2023)

    Google Scholar 

  12. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2, 84–90 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, vol. 2. Springer, New York (2009). https://doi.org/10.1007/978-0-387-21606-5

  14. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990)

    Article  Google Scholar 

  15. Larsen, K.G., Nyman, U., Wąsowski, A.: Interface input/output automata. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 82–97. Springer, Heidelberg (2006). https://doi.org/10.1007/11813040_7

    Chapter  Google Scholar 

  16. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Statistical model checking. In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp. 478–504. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91908-9_23

    Chapter  Google Scholar 

  17. Michel, O.: Webots: professional mobile robot simulation. J. Adv. Robot. Syst. 1(1), 39–42 (2004)

    Google Scholar 

  18. Nuzzo, P., Li, J., Sangiovanni-Vincentelli, A.L., Xi, Y., Li, D.: Stochastic assume-guarantee contracts for cyber-physical system design. ACM Trans. Embed. Comput. Syst., 18(1), 2:1–2:26 (2019)

    Google Scholar 

  19. Pasareanu, C.S., Gopinath, D., Yu, H.: Compositional verification for autonomous systems with deep learning components. CoRR, abs/1810.08303 (2018)

    Google Scholar 

  20. Saikrishna, V., Ray, S.: MML inference of hierarchical probabilistic finite state machine. In: 2019 Cybersecurity and Cyberforensics Conference (CCC), pp. 78–84 (2019)

    Google Scholar 

  21. Sen, K., Viswanathan, M., Agha, G.: VESTA: a statistical model-checker and analyzer for probabilistic systems. In: Second International Conference on the Quantitative Evaluation of Systems (QEST 2005), pp. 251–252 (2005)

    Google Scholar 

  22. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 202–215. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9_16

    Chapter  Google Scholar 

  23. Seshia, S.A., Sadigh, D., Sastry, S.S.: Toward verified artificial intelligence. Commun. ACM 65(7), 46–55 (2022)

    Article  Google Scholar 

  24. Webots. http://www.cyberbotics.com Open-source Mobile Robot Simulation Software

  25. Yannakakis, M.: Hierarchical state machines. In: van Leeuwen, J., Watanabe, O., Hagiya, M., Mosses, P.D., Ito, T. (eds.) TCS 2000. LNCS, vol. 1872, pp. 315–330. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44929-9_24

    Chapter  Google Scholar 

  26. Younes, H.L.S.: Probabilistic verification for “black-box’’ systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 253–265. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988_25

    Chapter  MATH  Google Scholar 

  27. Younes, H.L.S.: Ymer: a statistical model checker. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988_43

    Chapter  Google Scholar 

  28. Younes, H.L., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical probabilistic model checking. Int. J. Softw. Tools Technol. Transf. 8(3), 216–228 (2006)

    Google Scholar 

  29. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with application to Stateflow/simulink verification. Formal Meth. Syst. Des. 43(2), 338–367 (2013)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beyazit Yalcinkaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yalcinkaya, B., Torfah, H., Fremont, D.J., Seshia, S.A. (2023). Compositional Simulation-Based Analysis of AI-Based Autonomous Systems for Markovian Specifications. In: Katsaros, P., Nenzi, L. (eds) Runtime Verification. RV 2023. Lecture Notes in Computer Science, vol 14245. Springer, Cham. https://doi.org/10.1007/978-3-031-44267-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44267-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44266-7

  • Online ISBN: 978-3-031-44267-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics