Skip to main content

Interval-Based Remaining Time Prediction for Business Processes

  • Conference paper
  • First Online:
Service-Oriented Computing (ICSOC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 13121))

Included in the following conference series:

Abstract

Uncertainty is an unavoidable factor in predictive business process monitoring, especially in terms of remaining time prediction. However, existing methods only give a precise time as the result, which fails to consider and reveal the uncertainty of ongoing processes. As a novel attempt to add quantified uncertainty into process monitoring, this paper proposes a model that provides comprehensive predictive information. Specifically, an interval-based time predictor is constructed to make both an optimistic and a pessimistic forecast of the remaining time for business processes. In addition, a clustering-based method is used to extract trace patterns as prior knowledge to optimize interval prediction. We investigate LSTM networks as an approach to construct qualifying time intervals as well as different trace embedding and clustering methods. Our model achieves acceptable results on real-life event logs according to the measurement of coverage-width criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.

  2. 2.

    https://doi.org/10.17632/39bp3vv62t.1.

  3. 3.

    https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1.

  4. 4.

    https://doi.org/10.4121/uuid:453e8ad1-4df0-4511-a916-93f46a37a1b5.

References

  1. Van der Aalst, W.M., Rubin, V., Verbeek, H., van Dongen, B.F., Kindler, E., Günther, C.W.: Process mining: a two-step approach to balance between underfitting and overfitting. Software Syst. Modeling 9(1), 87–111 (2010)

    Article  Google Scholar 

  2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  3. Chu, Y., Li, M., Pedro, H.T., Coimbra, C.F.: Real-time prediction intervals for intra-hour DNI forecasts. Renew. Energy 83, 234–244 (2015)

    Article  Google Scholar 

  4. Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M., ter Hofstede, A.H.: A recommendation system for predicting risks across multiple business process instances. Decis. Support Syst. 69, 1–19 (2015)

    Article  Google Scholar 

  5. De Koninck, P., vanden Broucke, S., De Weerdt, J.: act2vec, trace2vec, log2vec, and model2vec: representation learning for business processes. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 305–321. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_18

    Chapter  Google Scholar 

  6. De Leoni, M., van der Aalst, W.M.P., Dees, M.: A general framework for correlating business process characteristics. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 250–266. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10172-9_16

  7. Di Francescomarino, C., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-based predictive process monitoring. IEEE Trans. Serv. Comput. 12(6), 896–909 (2016)

    Article  Google Scholar 

  8. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Petrucci, G., Yeshchenko, A.: An eye into the future: leveraging a-priori knowledge in predictive business process monitoring. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 252–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-5_15

    Chapter  Google Scholar 

  9. Evermann, J., Rehse, J.-R., Fettke, P.: A deep learning approach for predicting process behaviour at runtime. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 327–338. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58457-7_24

    Chapter  Google Scholar 

  10. Hwang, J.G., Ding, A.A.: Prediction intervals for artificial neural networks. J. Am. Stat. Assoc. 92(438), 748–757 (1997)

    Article  MathSciNet  Google Scholar 

  11. Kabir, H.D., Khosravi, A., Hosen, M.A., Nahavandi, S.: Neural network-based uncertainty quantification: a survey of methodologies and applications. IEEE Access 6, 36218–36234 (2018)

    Article  Google Scholar 

  12. Khosravi, A., Nahavandi, S., Creighton, D.: A prediction interval-based approach to determine optimal structures of neural network metamodels. Expert Syst. Appl. 37(3), 2377–2387 (2010)

    Article  Google Scholar 

  13. Khosravi, A., Nahavandi, S., Creighton, D., Atiya, A.F.: Lower upper bound estimation method for construction of neural network-based prediction intervals. IEEE Trans. Neural Networks 22(3), 337–346 (2010)

    Article  Google Scholar 

  14. Khosravi, A., Nahavandi, S., Creighton, D., Atiya, A.F.: Comprehensive review of neural network-based prediction intervals and new advances. IEEE Trans. Neural Networks 22(9), 1341–1356 (2011)

    Article  Google Scholar 

  15. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196. PMLR (2014)

    Google Scholar 

  16. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C., et al.: Predictive monitoring of business processes. In: Jarke, M. (ed.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6_31

    Chapter  Google Scholar 

  17. Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of business processes: a survey. IEEE Trans. Serv. Comput. 11(6), 962–977 (2017)

    Article  Google Scholar 

  18. Mori, U., Mendiburu, A., Dasgupta, S., Lozano, J.A.: Early classification of time series by simultaneously optimizing the accuracy and earliness. IEEE Trans. Neural Netw. Learn. Syst. 29(10), 4569–4578 (2018). https://doi.org/10.1109/TNNLS.2017.2764939

    Article  Google Scholar 

  19. Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-1_27

    Chapter  Google Scholar 

  20. Saeed, A., et al.: Hybrid bidirectional LSTM model for short-term wind speed interval prediction. IEEE Access 8, 182283–182294 (2020)

    Article  Google Scholar 

  21. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30

    Chapter  Google Scholar 

  22. Teinemaa, I., Dumas, M., Maggi, F.M., Di Francescomarino, C.: Predictive business process monitoring with structured and unstructured data. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 401–417. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_23

    Chapter  Google Scholar 

  23. Van Der Aalst, W.: Process mining. Commun. ACM 55(8), 76–83 (2012)

    Article  Google Scholar 

  24. Verenich, I., Dumas, M., La Rosa, M., Maggi, F.M., Di Francescomarino, C.: Complex symbolic sequence clustering and multiple classifiers for predictive process monitoring. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 218–229. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42887-1_18

    Chapter  Google Scholar 

  25. Verenich, I., Dumas, M., Rosa, M.L., Maggi, F.M., Teinemaa, I.: Survey and cross-benchmark comparison of remaining time prediction methods in business process monitoring. ACM Trans. Intell. Syst. Technol. (TIST) 10(4), 1–34 (2019)

    Article  Google Scholar 

  26. Xing, Z., Pei, J., Dong, G., Yu, P.S.: Mining sequence classifiers for early prediction. In: Proceedings of the 2008 SIAM International Conference on Data Mining, pp. 644–655. SIAM (2008)

    Google Scholar 

  27. Xing, Z., Pei, J., Yu, P.S., Wang, K.: Extracting interpretable features for early classification on time series. In: Proceedings of the 2011 SIAM International Conference on Data Mining, pp. 247–258. SIAM (2011)

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by National Key Research and Development Plan(No. 2019YFB1704405) and China National Science Foundation (Granted Number 62072301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C., Cao, J. (2021). Interval-Based Remaining Time Prediction for Business Processes. In: Hacid, H., Kao, O., Mecella, M., Moha, N., Paik, Hy. (eds) Service-Oriented Computing. ICSOC 2021. Lecture Notes in Computer Science(), vol 13121. Springer, Cham. https://doi.org/10.1007/978-3-030-91431-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91431-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91430-1

  • Online ISBN: 978-3-030-91431-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics