Skip to main content

Enhancing Completion Time Prediction Through Attribute Selection

  • Conference paper
  • First Online:
Information Technology for Management: Emerging Research and Applications (AITM 2018, ISM 2018)

Abstract

Approaches have been proposed in process mining to predict the completion time of process instances. However, the accuracy levels of the prediction models depend on how useful the log attributes used to build such models are. A canonical subset of attributes can also offer a better understanding of the underlying process. We describe the application of two automatic attribute selection methods to build prediction models for completion time. The filter was used with ranking whereas the wrapper was used with hill-climbing and best-first techniques. Annotated transition systems were used as the prediction model. Compared to decision-making by human experts, only the automatic attribute selectors using wrappers performed better. The filter-based attribute selector presented the lowest performance on generalization capacity. The semantic reasonability of the selected attributes in each case was analyzed in a real-world incident management process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This paper details the approach and results published in a summarized preliminary version [13].

  2. 2.

    In the forward selection, the search initial point is a singleton attribute subset to which one new attribute is incorporated at each new step in the search.

  3. 3.

    Available at http://each.uspnet.usp.br/sarajane/?page_id=12.

References

  1. de Leoni, M., van der Aalst, W.M., Dees, M.: A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Inf. Syst. 56, 235–257 (2016). https://doi.org/10.1016/j.is.2015.07.003

    Article  Google Scholar 

  2. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-642-19345-3

    Book  MATH  Google Scholar 

  3. van der Aalst, W., Schonenberg, M., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011). https://doi.org/10.1016/j.is.2010.09.001

    Article  Google Scholar 

  4. Boonjing, V., Pimchangthong, D.: Data mining for positive customer reaction to advertising in social media. In: Ziemba, E. (ed.) AITM/ISM-2017. LNBIP, vol. 311, pp. 83–95. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77721-4_5

    Chapter  Google Scholar 

  5. Łobaziewicz, M.: The role of ICT solutions in the intelligent enterprise performance. In: Ziemba, E. (ed.) AITM/ISM-2016. LNBIP, vol. 277, pp. 120–136. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53076-5_7

    Chapter  Google Scholar 

  6. Pawełoszek, I.: Data mining approach to assessment of the ERP system from the vendor’s perspective. In: Ziemba, E. (ed.) Information Technology for Management. LNBIP, vol. 243, pp. 125–143. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30528-8_8

    Chapter  Google Scholar 

  7. Berti, A.: Improving process mining prediction results in processes that change over time. In: Proceedings of the 5th International Conference on Data Analytics, pp. 37–42. IARIA (2016)

    Google Scholar 

  8. Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Data-aware remaining time prediction of business process instances. In: Proceedings of the 2014 International Joint Conference on Neural Networks, pp. 816–823. IEEE, July 2014. https://doi.org/10.1109/IJCNN.2014.6889360

  9. Rogge-Solti, A., Vana, L., Mendling, J.: Time series Petri net models - enrichment and prediction. In: Proceedings of the 5th International Symposium on Data-driven Process Discovery and Analysis (SIMPDA), pp. 109–123 (2015). https://doi.org/10.1007/978-3-319-53435-0_6

  10. Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-Markovian stochastic Petri nets. Inf. Syst. 54, 1–14 (2015). https://doi.org/10.1016/j.is.2015.04.004

    Article  Google Scholar 

  11. Hinkka, M., Lehto, T., Heljanko, K., Jung, A.: Structural feature selection for event logs. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 20–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74030-0_2

    Chapter  Google Scholar 

  12. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1), 273–324 (1997). https://doi.org/10.1016/S0004-3702(97)00043-X

    Article  MATH  Google Scholar 

  13. do Amaral, C.A.L., Fantinato, M., Peres, S.M.: Attribute selection with filter and wrapper: an application on incident management process. In: Proceedings of the 15th Conference on Advanced Information Technologies for Management (AITM) in Federated Conference on Computer Science and Information Systems (FedCSIS), vol. 15, pp. 679–682 (2018). https://doi.org/10.15439/2018F126

  14. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003). https://doi.org/10.1162/153244303322753616

    Article  MATH  Google Scholar 

  15. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97(1–2), 245–271 (1997). https://doi.org/10.1016/S0004-3702(97)00063-5

    Article  MathSciNet  MATH  Google Scholar 

  16. Armstrong, J.S., Collopy, F.: Error measures for generalizing about forecasting methods: empirical comparisons. Int. J. Forecast. 8(1), 69–80 (1992). https://doi.org/10.1016/0169-2070(92)90008-W

    Article  Google Scholar 

  17. de Myttenaere, A., Golden, B., Grand, B.L., Rossi, F.: Mean absolute percentage error for regression models. Neurocomputing 192, 38–48 (2016). https://doi.org/10.1016/j.neucom.2015.12.114

    Article  Google Scholar 

  18. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler, E., Günther, C.W.: Process mining: a two-step approach to balance between underfitting and overfitting. Softw. Syst. Model. 9(1) (2008). https://doi.org/10.1007/s10270-008-0106-z

  19. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017). https://doi.org/10.1016/j.dss.2017.04.003

    Article  Google Scholar 

  20. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30

    Chapter  Google Scholar 

  21. Richardson, J.T.E.: Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 6(2), 135–147 (2011). https://doi.org/10.1016/j.edurev.2010.12.001

    Article  MathSciNet  Google Scholar 

  22. itSMF: Global survey on IT service management. http://www.itil.co.il

  23. Marrone, M., Gacenga, F., Cater-Steel, A., Kolbe, L.: IT service management: a cross-national study of ITIL adoption. Commun. Assoc. Inf. Syst. 34, 49.1–49.30 (2014). https://doi.org/10.17705/1CAIS.03449

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the São Paulo Research Foundation (Fapesp), Brazil; grants 2017/26491-1 and 2017/26487-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Fantinato .

Editor information

Editors and Affiliations

Appendix

Appendix

A brief description of the 15 attributes listed in Table 4 is presented in Table 10.

Table 10. Description of the 15 attributes used in the experiment

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amaral, C.A.L., Fantinato, M., Reijers, H.A., Peres, S.M. (2019). Enhancing Completion Time Prediction Through Attribute Selection. In: Ziemba, E. (eds) Information Technology for Management: Emerging Research and Applications. AITM ISM 2018 2018. Lecture Notes in Business Information Processing, vol 346. Springer, Cham. https://doi.org/10.1007/978-3-030-15154-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15154-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15153-9

  • Online ISBN: 978-3-030-15154-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics