Skip to main content

Anisotropy and Formability

  • Conference paper
Advances in Material Forming

Abstract

The chapter presents synthetically the most recent models of the anisotropic plastic behavior. The first section gives an overview of the classical models, In the next step, the discussion is focused on the anisotropic formulations developed on the basis of the theories of linear transformations and tensor representations, respectively. Those models are applied to different types of materials: body centered, faced centered and hexagonal-close packed metals. A brief review of the experimental methods used for observing and modeling the anisotropic plastic behavior of metallic sheets and tubes under biaxial loading is presented together with the models and methods developed for predicting and establishing the limit strains. The capabilities of some commercial programs specially designed for the computation of forming limit curves (FLC) are also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abedrabbo, N., Pourboghrat, F., Carsley, J.: Forming of aluminum alloys at elevated temperatures. Int. J. Plasticity 22 (2006) 314–373

    Article  MATH  Google Scholar 

  2. Aretz, H.: Numerical restrictions of the modified maximum force criterion for prediction of forming limits in sheet metal forming. Modelling Simul. Mater. Sci. Eng. 12 (2004) 677–692

    Article  Google Scholar 

  3. Aretz, H.: Impact of the equibiaxial plastic strain ratio on the FLD prediction, In: Juster, N., Rosochowski, A. (eds.): Proc. 9th ESAFORM Conference on Material Forming. Glasgow, April 2006. AKAPIT, Krakow (2006) 311–314

    Google Scholar 

  4. Arrieux, R., Bedrin, C, Boivin, M.: Determination of an intrinsec Forming Limit Stress Diagram for isotropic sheets, In: Proc. of the 12th IDDRG Congress. S-ta Margerita Ligure (1982) 61–71

    Google Scholar 

  5. Arrieux, R., Bedrin, C, Boivin, M.: Determination of the Strain Path Influence of the Forming Limit Diagrams, from the Limit Stress Curve. Annals of the CIRP. 34 (1985) 205–208

    Article  Google Scholar 

  6. Arrieux, R.: Determination of the Forming Limit Stress Curve for Anisotropic Sheets. Annals of the CIRP. 36 (1987) 195–198

    Google Scholar 

  7. Asaro, R.J., Needleman, A.: Texture development and strain hardening in ratedependent polycrystals. Acta Metall. 33 (1985) 923–953

    Article  Google Scholar 

  8. Banabic, D.: Limit strains in the sheet metals by using the 1993 Hill’s yield criterion. J. Materials Process. Techn. 92–93 (1999) 429–432

    Article  Google Scholar 

  9. Banabic, D., Comsa, D.S., Balan, T., A new yield criterion for orthotropic sheet metals under plane-stress conditions. In: Banabic, D. (ed.): Proc. of the 7th Conf. “TPR2000”. Cluj Napoca, (2000) 217–224

    Google Scholar 

  10. Banabic, D.: Anisotropy of Sheet Metals. In: Banabic, D. (ed.): Formability of Metallic Materials, Springer-Verlag, Berlin Heidelberg New York (2000) 119–172

    Google Scholar 

  11. Banabic, D.: Forming Limits of Sheet Metals, In: Banabic, D. (ed.): Formability of Metallic Materials, Springer-Verlag, Berlin Heidelberg New York (2000) 173–215

    Google Scholar 

  12. Banabic, D.: Theoretical Models of the FLD’s. In: Banabic, D. (ed.): Formability of Metallic Materials, Springer-Verlag, Berlin Heidelberg New York (2000) 317–327

    Google Scholar 

  13. Banabic, D., Dannenmann, E.: The influence of the yield locus shape on the limits strains, J. Materials Process. Techn. 109 (2001) 9–12

    Article  Google Scholar 

  14. Banabic, D., Kuwabara, T., Balan, T., Comsa, D.S., Julean, D.: Non-quadratic yield criterion for orthotropic sheet metals under plane-stress conditions, Int. J. Mech. Sci. 45 (2003) 797–811

    Article  MATH  Google Scholar 

  15. Banabic, D. et al.: FLD theoretical model using a new anisotropic yield criterion, J. Materials Process. Techn. 157–158 (2004) 23–27

    Article  Google Scholar 

  16. Banabic, D.: Anisotropy and formability of AA5182-0 aluminium alloy sheets. Annales of CIRP. 53 (2004) 219–222

    Google Scholar 

  17. Banabic, D. et al.: Prediction of FLC from two anisotropic constitutive models. In: Stören, S. (ed.): Proc. 7th ESAFORM Conference on Material Forming. Trondheim, (2004) 455–459

    Google Scholar 

  18. Banabic, D., Aretz, H., Comsa, D.S., Paraianu, L.: An improved analytical description of orthotropy in metallic sheets, Int. J. Plasticity 21 (2005) 493–512

    Article  MATH  Google Scholar 

  19. Banabic, D., Aretz, H., Paraianu, L., Jurco, P.: Application of various FLD modelling approaches. J. Modelling Simul. Materials Science Eng. 13 (2005) 759–769

    Article  Google Scholar 

  20. Banabic, D., Cazacu, O., Paraianu, L., Jurco, P.: Recent Developments in the Formability of Aluminum Alloys, In: Smith, L.M., Pourboghrat, F., Yoon, J.-W., Stoughton, T.B. (eds): Proc. of the NUMISHEET 2005 Conference. AIP (2005) 466–472

    Google Scholar 

  21. Banabic, D.: Numerical prediction of FLC using the M-K-Model combined with advanced material models, In: Hora, P. (ed): Numerical and experimental methods in prediction of forming limits in sheet forming and tube hydroforming processes. ETH Zürich, Zürich (2006) 37–42

    Google Scholar 

  22. Banabic, D., Vos, M.: Increasing the Robustness in the Simulation of Sheet Metal Forming Processes using a new Concept–Forming Limit Band. Annales of CIRP. 56 (2007) (in press)

    Google Scholar 

  23. Barata da Rocha, A., Jalinier, J.M.: Plastic instability of sheet metals under simple and complex strain path. Trans. Iron Steel Inst. Japan 24 (1984) 133–140

    Google Scholar 

  24. Barata da Rocha, A., Barlat, F., Jalinier, J.M.: Prediction of the forming limit diagrams of anisotropic sheets in linear and non-linear loading. Mat. Sci. Eng. 68 (1985) 151–164

    Article  Google Scholar 

  25. Barlat, F., Richmond, O.: Prediction of tricomponent plane stress yield surfaces and associated flow and failure behavior of strongly textured FCC sheets. Mat. Sci. Eng. 95 (1985) 15–29

    Article  Google Scholar 

  26. Barlat, F.: Crystallographic texture, anisotropic yield surfaces and forming limits of sheetmetals. Mat. Sci. Eng. 91 (1987) 55–72

    Article  Google Scholar 

  27. Barlat, F., Lian, J.: Plastic Behavior and Stretchability of Sheet Metals. Part I: Yield Function for Orthotropic Sheets under Plane Stress Conditions, Int. J. Plasticity 5 (1989) 51–66

    Article  Google Scholar 

  28. Barlat, F., Lege, DJ., Brem, J.C.: A six-component yield function for anisotropic materials. Int. J. Plasticity 7 (1991) 693–712

    Article  Google Scholar 

  29. Barlat, F., Chung, K.: Anisotropic Potentials for Plastically Deforming. Metals, Model. Simul. Mater. Sci. Eng. 1 (1993) 403–416

    Article  Google Scholar 

  30. Barlat, F., Becker, R.C., Hayashida, Y., Maeda, Y., Yanagawa, M., Chung, K., Brem, J.C., Lege, DJ., Matsui, K., Murtha, S.J., Hattori, S.: Yielding description of solution strengthened aluminum alloys. Int. J. Plasticity 13 (1997) 185–401

    Article  Google Scholar 

  31. Barlat, F., Maeda, Y., Chung, K., Yanagawa, M., Brem, J.C., Hayashida, Y., Lege, DJ., Matsui, K., Murtha, S.J., Hattori, S., Becker, R.C., Makosey, S.: Yield function development for aluminum alloy sheets. J. Mech. Phys. Solids 45 (1997) 1727–1763

    Article  Google Scholar 

  32. Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, DJ., Pourboghrat, F., Choi, S.-H., Chu, E.: Plane stress yield function for aluminum alloy sheet-Part I: Theory, Int. J. Plasticity 19 (2003) 1297–1319

    Article  MATH  Google Scholar 

  33. Barlat, F., Cazacu, O. Zyczowski, M., Banabic, D., Yoon, J.W.: Yield surface plasticity and anisotropy. In: Raabe, D., Roters, F., Barlat, F., Chen, L.-Q. (eds): Continuum Scale Simulation of Engineering Materials-Fundamentals-Microstructures — Process Applications. WileyVCH Verlag Manheim (2004) 145–177

    Chapter  Google Scholar 

  34. Barlat, F.: Constitutive modeling for metals. In: Banabic, D., (ed.): Proc. 8th ESAFORM Conference on Material Forming. Cluj-Napoca April 2005. The Publishing House of the Romanian Academy, Bucharest (2005) 3–10

    Google Scholar 

  35. Barlat, F., Chung, K.: Anisotropic strain rate potential for aluminum alloy plasticity. In: Banabic, D. (ed.): Proc. 8th ESAFORM Conference on Material Forming. Cluj-Napoca April 2005. The Publishing House of the Romanian Academy, Bucharest (2005) 415–418

    Google Scholar 

  36. Barlat, F., Aretz, H., Yoon, J.W., Karabin, M.E., Brem, J.C., Dick, R.E.: Linear transformation-based anisotropic yield functions. Int. J. Plasticity 21 (2005) 1009–1039

    Article  MATH  Google Scholar 

  37. Barlat, F.: Constitutive modeling for metals, In: Banabic D. (ed.): Advanced Methods in Material Forming. Springer-Verlag, Berlin Heidelberg New York (2007) 5–25

    Google Scholar 

  38. Barlat, F., Yoon, J.W., Cazacu, O.: On linear transformations of stress tensors for the description of plastic anisotropy. Int J. Plasticity 23 (2007) 876–896

    Article  MATH  Google Scholar 

  39. Bate, P.: The prediction of limit strains in steel sheet using a discrete slip plasticity model. Int. J. Mech. Sci. 26 (1984) 373–384

    Article  Google Scholar 

  40. Bell, J.F.: The Experimental Foundations of Solid Mechanics. In: Truesdell, C. (ed.): Mechanics of Solids. Vol. I Springer-Verlag, Berlin Heidelberg New York (1984)

    Google Scholar 

  41. Berstad, T. et al.: FEM and a microstructure based work-hardening model used to calculate FLCs. In: Stören, S. (ed.): Proc. 7th ESAFORM Conference on Material Forming. Trondheim, (2004) 131–134

    Google Scholar 

  42. Boehler, J.P., Demmerle, S., Koss, S.: A new direct biaxial testing machine for anisotropic materials. Exp. Mech. 34 (1984) 1–9

    Article  Google Scholar 

  43. Boger, R.K., Wagoner, R.H., Barlat, F., Lee M.G., Chung, K.: Continuous, large strain, tension/compression testing of sheet material. Int. J. Plasticity 21 (2005) 2319–2343

    Article  MATH  Google Scholar 

  44. Borsutzki, M., Keßler, L., Sonne, H-M.: Kennzeichnung des Verfestigungsverhaltens von Werkstoffen mit der Biaxialprüfung. In: Werkstoffprüfung 2002, Proc. DVM-Conference, Bad Nauheim (2002) 186 (in German)

    Google Scholar 

  45. Boudeau, N., Gelin J.C., Salhi S.: Computational prediction of the localized necking in sheet forming based on microstructural material aspects. Computational Materials Science 11 (1998) 45–64

    Article  Google Scholar 

  46. Boudeau, N., Gelin, J.C.: Necking in sheet metal forming. Influence of macroscopic and microscopic properties of materials, Int. J. Mech. Sciences 42 (2000) 2209–2232

    Article  MATH  Google Scholar 

  47. Bragard, A., Baret, J.C., Bonnarens, H.: A simplified technique to determine the FLD at onset of necking. CRM 33 (1972) 53–63

    Google Scholar 

  48. Bressan, J.D., Williams, J.A.: The use of a shear instability criterion to predict local necking in sheet metal deformation. Int. J. Mech. Sciences 25 (1983) 155–168

    Article  MATH  Google Scholar 

  49. Bron, F., Besson, J.: A yield function for anisotropic materials. Application to aluminum alloys. Int. J. Plasticity 20 (2003) 937–963

    Article  Google Scholar 

  50. Brunet, M., Morestin, F.: Experimental and analytical necking studies of anisotropic sheet metals. J. Materials Process. Techn. 112 (2001) 214–226

    Article  Google Scholar 

  51. Brunet, M., Morestin, F., Walter, H.: Damage modeling in sheet metals forming processes with experimental validations. In: Habraken, A.M. (ed.): Proc. 4th ESAFORM Conference on Material Forming. Liege (2001) 209–212

    Google Scholar 

  52. Brunet, M., Morestin, F., Walter, H.: Anisotropic ductile fracture in sheet metal forming processes using damage theory. In: Pietrzyk, M., Mitura, Z., Kaczmat, J. (eds.): Proc. 5th ESAFORM Conference on Material Forming. Krakow (2002) 135–138

    Google Scholar 

  53. Brunet, M., Morestin, F., Walter-Laberre, H.: Failure analysis of anisotropic sheet metals using a non-local plastic damage model. J. Materials Process. Techn. 170 (2005) 457–470

    Article  Google Scholar 

  54. Brunet M., Clerc P.: Two prediction methods for ductile sheet metal failure, In: Proc. 10th ESAFORM Conference on Material Forming, Zaragoza (2007) (in press)

    Google Scholar 

  55. Butuc, C. et al.: A more general model for FLD prediction. J. Materials Proc. Techn. 125–126 (2002) 213–218

    Article  Google Scholar 

  56. Butuc, C. et al.: Influence of constitutive equations and strain-path change on the forming limit diagram for 5182 Aluminum Alloy. In: Pietrzyk, M., Mitura, Z., Kaczmat J. (eds.): Proc. 5th ESAFORM Conference on Material Forming, Krakow (2002) 715–719

    Google Scholar 

  57. Butuc, C, Gracio, J.J., Barata da Rocha, A.: A theoretical study on forming limit diagrams prediction. J. Material Proc. Techn., 142 (2003) 714–724

    Article  Google Scholar 

  58. Butuc, C, Gracio, J.J., Barata da Rocha, A.: Application of the YLD 96 yield criterion on describing the anisotropy and formability of the BCC materials, In: Banabic, D. (ed.): Proc. 8th ESAFORM Conference on Material Forming. Cluj-Napoca April 2005. The Publishing House of the Romanian Academy, Bucharest (2005) 391–394

    Google Scholar 

  59. Butuc, C. et al.: An experimental and theoretical analysis on the application of stress-based forming limit criterion. Int. J. Mech. Sci. 48 (2006) 414–429

    Article  Google Scholar 

  60. Cao, J. et al.: Prediction of localized thinning in sheet metal using a general anisotropic yield criterion. Int. J. Plasticity 16 (2000) 1105–1129

    Article  MATH  Google Scholar 

  61. Carleer, B., Sigvant, M.: Process Scatter with Respect to Material Scatter. In: Liewald, M. (ed.): New Developments in Sheet Metal Forming. Institute for Metal Forming Technology, University of Stuttgart (2006) 225–239

    Google Scholar 

  62. Cazacu, O., Barlat, F.: Generalization of Drucker’s yield criterion to orthotropy. Mathematics and Mechanics of Solids. 6 (2001) 613–630

    Article  MATH  Google Scholar 

  63. Cazacu, O., Barlat, F.: Application of representation theory to describe yielding of anisotropic aluminum alloys. Int. J. of Engng. Sci. 41 (2003) 1367–1385

    Article  Google Scholar 

  64. Cazacu, O., Barlat, F.: A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals. Int. J. Plasticity 20 (2004) 2027–2045

    Article  MATH  Google Scholar 

  65. Cazacu, O., Plunkett, B., Barlat, F.: Orthotropic yield criterion for hexagonal close packed metals. Int. J. Plasticity 22 (2006) 1171–1194

    Article  MATH  Google Scholar 

  66. Chan, K.C., Tong G.Q.: Formability of high-strain-rate superplastic Al-4.4Cu-1.5Mg/21 SiCW, composite under biaxial tension. Material Science Eng. A340 (2003) 49–57

    Article  Google Scholar 

  67. Chow, CL. et al.: A unified damage approach for predicting FLDs. Trans ASME, J. Eng. Materials Techn. 119 (1997) 346–353

    Google Scholar 

  68. Chow, C.L., Yang X.J.: Prediction of the FLD on the basis of the damage criterion under non-proportional loading. Proc. Instn. Mechn. Eng. 215C (2001) 405–414

    Google Scholar 

  69. Chow, CL. et al.: Prediction of FLD for AL6111-T4 under non-proportional loading. Int. J. Mech. Sciences 43 (2001) 471–486

    Article  MATH  Google Scholar 

  70. Demmerle, S., Boehler, J.P.: Optimal design of biaxial tensile cruciform specimens. J. Mech. Phys Solids 41 (1983) 143–181

    Article  Google Scholar 

  71. d’Hayer, R., Bragard, A.: Determination of the limiting strains at the onset of necking. CRM 42 (1975) 33–35

    Google Scholar 

  72. Drucker, D.C.: Relation of experiments to mathematical theories of plasticity. J. Appl. Mech. 16 (1949) 349–357

    MATH  MathSciNet  Google Scholar 

  73. Dudzinski, D., Molinari, A.: Instability of visco-plastic deformation in biaxial loading. C.R. Acad. Sci. Paris 307 (1988) 1315–1321

    MATH  Google Scholar 

  74. Evangelista, S.H. et al.: Implementing a modified Marciniak-Kuczynki model using the FEM for the simulation of sheet metal deep drawing. J. Materials Process. Techn. 130–131 (2002) 135–144

    Article  Google Scholar 

  75. Feldmann, P., Schatz, M.: Effective evaluation of FLC-tests with the optical inprocess strain analysis system AUTOGRID. In: Hora, P. (ed): Numerical and experimental methods in prediction of forming limits in sheet forming and tube hydroforming processes. ETH Zürich, Zürich (2006) 69–73

    Google Scholar 

  76. Ferron, G., Makinde, A. J.: Design and development of a biaxial strength testing device. J. Testing Eval. 16 (1988) 253–256

    Google Scholar 

  77. Fjeldbo, S.K. et al.: A numerical study on the onset of plastic instability in extruded materials with strong through-thickness texture variation. In: Banabic, D. (ed.): Proc. 8th ESAFORM Conference on Material Forming. Cluj-Napoca April 2005. The Publishing House of the Romanian Academy, Bucharest (2005) 209–213

    Google Scholar 

  78. Fortunier, R.: Dual potentials and extremum work principles in single crystal plasticity. J. Mech. Phys. Solids 37 (1989) 779–790

    Article  MATH  Google Scholar 

  79. Friebe, H., et al.: FLC determination and forming analysis by optical measurement system, In: Hora, P. (ed.): Numerical and experimental methods in prediction of forming limits in sheet forming and tube hydroforming processes. ETH Zürich, Zürich (2006) 74–81

    Google Scholar 

  80. Ganjiani, M., Assempour, A.: An improved analytical approach for determination of FLD considering the effects of yield functions. J. Materials Process. Techn. 182 (2007) 598–607

    Article  Google Scholar 

  81. Gänser, H.P., Werner, E.A., Fisher, F.D.: FLDs: a micromechanical approach, Int. J. Mech. Sciences. 42 (2000) 2041–2054

    Article  MATH  Google Scholar 

  82. Gese, H., Dell, H.: Numerical prediction of FLC with the program CRACH. In: Hora, P. (ed): Numerical and experimental methods in prediction of forming limits in sheet forming and tube hydroforming processes. ETH Zürich, Zürich (2006) 43–49

    Google Scholar 

  83. Gologanu, M. et al.: Recent extension of Gurson’s model for porous ductile metals. In: Suquet, P. (ed.): Continuum Micromechanics. Springer-Verlag, Berlin Heidelberg New York (1997) 61–130

    Google Scholar 

  84. Gronostajski, J.: Application of limit stresses to determine limit strains at complex strain paths. Archiwum Hutnictwa. 30 (1985) 41–56

    Google Scholar 

  85. G’sell, C, Boni, S., Shrivastava, S.: Application of the plane simple shear test for determination of the plastic behaviour of solid polymers at large strains. J. Mater. Sci. 18 (1983) 903–918

    Article  Google Scholar 

  86. Han, H.N., Kim, K.H.: A ductile fracture criterion in sheet metal forming process. J. Materials Process. Techn. 142 (2003) 231–238

    Article  Google Scholar 

  87. Hashiguchi, K., Protasov, A.: Localized necking analysis by the subloading surface model with tangential-strain rate and anisotropy. Int. J. Plasticity 20 (2004) 1909–1930

    Article  MATH  Google Scholar 

  88. Hecker, S.S.: A simple forming limit curve technique and results on aluminum alloys, In: proc. of the IDDRG Congress, Amsterdam (1972) 5.1–5.8

    Google Scholar 

  89. Hecker, S.S.: Experimental studies of yield phenomena in biaxially loaded metals, in: Stricklin, J.A., Saczalski, K.H. (eds.): Constitutive Equations in Viscoplasticity: Computational and Engineering Aspects. ASME, New York (1976) 1–33

    Google Scholar 

  90. Hershey, A.V.: The plasticity of an isotropic aggregate of anisotropic face centred cubic crystals. J. Appl. Mech. 21 (1954) 241–249

    MATH  Google Scholar 

  91. Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. London A193 (1948) 281–297

    Google Scholar 

  92. Hill, R.: On discontinous plastic states, with special reference to localized necking in thin sheets. J. Mech. Phys. Sol. 1 (1952) 19–30

    Article  Google Scholar 

  93. Hill, R.: Theoretical plasticity of textured aggregates. Math. Proc. Cambridge Philos. Soc. 85 (1979) 179–191

    MATH  MathSciNet  Google Scholar 

  94. Hill, R.: Constitutive dual potential in classical plasticity. J. Mech. Phys. Solids 35 (1987) 23–33

    Article  MATH  MathSciNet  Google Scholar 

  95. Hill, R.: Constitutive modelling of orthotropic plasticity in sheet metals. J. Mech. Phys. Solids 38 (1990) 405–417

    Article  MATH  MathSciNet  Google Scholar 

  96. Hill, R.: A user-friendly theory of orthotropic plasticity in sheet metals. Int. J. Mech. Sci. 35 (1993) 19–25

    Article  MATH  Google Scholar 

  97. Hill, R., Hecker, S.S., Stout, M.G.: An investigation of plastic flow and differential work hardening in orthotropic brass tubes under fluid pressure and axial load. Int. J. Solids Struct. 31 (1994) 2999–3021

    Article  MATH  Google Scholar 

  98. Hiroi T., Nishimura H.: The influence of surface defects on the forming-limit diagram of sheet metal. J. Materials Process. Techn. 72 (1997) 102–109

    Article  Google Scholar 

  99. Hiwatashi, S., Van Bael, A., Van Houtte, P., Teodosiu, C: Prediction of the forming limit strains under strain-path changes: application of an anisotropic model based on texture and dislocation structure, Int. J. Plasticity 14 (1998) 647–669

    Article  MATH  Google Scholar 

  100. Hoferlin, E., Van Bael, A., Van Houtte, P., Steyaert, G., De Maré, C.: The design of a biaxial tensile test and its use for the validation of crystallographic yield loci. Modelling Simul. Mater. Sci. Eng. 8 (2000) 423–433

    Article  Google Scholar 

  101. Hopperstad, O.S. et al.: A preliminary numerical study on the influence of PLC on the formability of aluminium alloys, In: Juster, N., Rosochowski, A. (eds.): Proc. 9th ESAFORM Conference on Material Forming. Glasgow, April 2006. AKAPIT, Krakow (2006) 315–318

    Google Scholar 

  102. Hora, P., Tong, L.: Prediction methods for ductile sheet metal failure using FE-simulation. In: Proc. of the IDDRG Congress. Lisbon (1994) 363–375

    Google Scholar 

  103. Hora, P., Tong, L., Reissner, J.: A prediction method for ductile sheet metal failure. In: Lee, J.K., Kinzel, G.L., Wagoner, R.H. (eds): Proc. of the NUMISHEET 1996 Conference, Dearborn (1996) 252–256

    Google Scholar 

  104. Hora, P., Krauer, J. (eds): Numerical and experimental methods in prediction of forming limits in sheet metal forming and tube hydroforming processes. FLC-Zurich 06 Conference, Zürich (2006)

    Google Scholar 

  105. Horstemeyer, M.F., Chiesa, M.L., Bamman, DJ.: Predicting FLDs with explicit and implicit FE codes. In: Proc. SAE Conference, Detroit (1994) 481–495

    Google Scholar 

  106. Hosford, W.F.: Texture strengthening. Metals. Eng. Quarterly 6 (1966) 13–19

    Google Scholar 

  107. Hosford, W.F.: A generalized isotropic yield criterion. J. Appl. Mech. Trans. ASME 39 (1972) 607–609

    Google Scholar 

  108. Hosford, W.F.: On yield loci of anisotropic cubic metals. In: Proceedings 7th North American Metalworking Conference, SME, Dearborn MI, (1979) 191–197

    Google Scholar 

  109. Hosford, W.F.: Comments on anisotropic yield criteria. Int. J. Mech. Sci. 27 (1985) 423–427

    Article  Google Scholar 

  110. Hotz, W.: European efforts in standardization of FLC. In: Hora, P. (ed): Numerical and experimental methods in prediction of forming limits in sheet forming and tube hydroforming processes. ETH Zürich, Zürich (2006) 24–25

    Google Scholar 

  111. Hu, Z., Rauch, E.F., Teodosiu, C.: Work hardening behavior of mild steel under stress reversal at large strains. Int. J. Plasticity 8 (1992) 839–856

    Article  Google Scholar 

  112. Hu, J.G. et al.: Influence of damage and texture evolution on limit strain in biaxially stretched aluminium alloy sheets. Materials Science Eng. A251 (1998) 243–250

    Article  Google Scholar 

  113. Huang, H.M., Pan, J., Tang, S.C.: Failure prediction in anisotropic sheet metals under forming operations with consideration of rotating principal stretch directions, Int. J. Plasticity 16 (2000) 611–633

    Article  MATH  Google Scholar 

  114. Ikegami, K.: Experimental Plasticity on the Anisotropy of Metals. In: Boehler, J.P., (ed.): Mechanical Behavior of Anisotropic Solids. Proceedings of the Euromech Colloquim 115, Colloques Inter, du CNRS, Paris (1979) 201–242

    Google Scholar 

  115. Inal, K., Neale, K.W., Aboutajeddine, A.: Forming limit comparisons for FCC and BCC sheets. Int. J. Plasticity 21 (2005) 1255–1266

    Article  MATH  Google Scholar 

  116. ISO 12004: Metallic materials-sheet and strip-Determination of the forming limit curves. (2006)

    Google Scholar 

  117. Iwata, N., Matsui, M., Kato, T., Kaneko, K., Tsutamori, H., Suzuki, N., Gotoh, M.: Numerical prediction of spring-back behavior of a stamped metal sheet by considering material nonlinearity during unloading. In: Mori, K. (ed.): Proc. 7th Int. Conf. Numerical Methods in Industrial Forming Processes, Balkema (2001) 693

    Google Scholar 

  118. Janssens, K., Lambert, F., Vanrostenberghe, S., Vermeulen, M.: Statistical evaluation of the uncertainty of experimentally characterised forming limits of sheet steel. J. Materials Process. Techn. 112 (2001) 174–184

    Article  Google Scholar 

  119. Jurco, P., Banabic, D.: A user-frienldy programme for calculating Forming Limit Diagrams. In: Banabic, D. (ed): Proc. 8th ESAFORM Conference on Material Forming. Cluj-Napoca April 2005. The Publishing House of the Romanian Academy, Bucharest (2005) 423–427

    Google Scholar 

  120. Karafillis, A.P., Boyce, M.C.: A general anisotropic yield criterion using bounds and a transformation weighting tensor. J. Mech. Phys. Solids 41 (1993) 1859–1886

    Article  MATH  Google Scholar 

  121. Kim, D., Barlat, F., Bouvier, S., Rabahallah, Balan T. M., Chung, K.: Non-quadratic anisotropic potential based on linear transformation of plastic strain rate. Int. J. Plasticity (2007) (in press)

    Google Scholar 

  122. Kim, K.J. et al.: Formability of AA5182/polypropilylene/AA5182 sandwich sheets. J. Materials Process. Technol. 139 (2003) 1–7

    Article  Google Scholar 

  123. Knockaert, R. et al.: Forming limits prediction using rate-independent polycrystalline plasticity. Int. J. Plasticity 16 (2000) 179–198

    Article  MATH  Google Scholar 

  124. Kobayashi, T., Ishigaki, H., Tadayuki, A.: Effect of strain ratios on the deforming limit of steel sheet and its application to the actual press forming. In: Proc. of the IDDRG Congress, Amsterdam (1972) 8.1–8.4

    Google Scholar 

  125. Kreißig, R., Schindler, J.: Some experimental results on yield condition in plane stress state. Acta Mech. 65 (1986) 169–179

    Article  Google Scholar 

  126. Kuroda, M., Tvergaard, V.: Use of abrupt strain path change for determining subsequent yield surface: illustrations of basic idea. Acta Mater. 47 (1999) 3879–3890

    Article  Google Scholar 

  127. Kuroda M., Tvergaard V.: FLD for anisotropic metal sheets with different yield criteria, Int. J. Solids Struct. 37 (2000) 5037–5059

    Article  MATH  Google Scholar 

  128. Kuroda M., Tvergaard V.: Effect of strain path change on limits to ductility pf anisotropic metal sheets, Int. J. Mech. Sciences 42 (2000) 867–887

    Article  MATH  Google Scholar 

  129. Kuroda, M.: Effects of texture on mechanical properties of aluminium alloys sheets and texture optimization strategy, In: Smith, L.M., Pourboghrat, F., Yoon, J.-W., Stoughton, T.B. (eds): Proc. of the NUMISHEET 2005 Conf. AIP (2005) 445–450

    Google Scholar 

  130. Kuwabara, T., Ikeda, S., Kuroda, T.: Measurement and Analysis of Differential Work hardening in Cold-Rolled Steel Sheet under Biaxial Tension. J. Materials Process. Technol. 80–81 (1998) 517–523

    Article  Google Scholar 

  131. Kuwabara, T., Kuroda, M., Tvergaard, V., Nomura, K.: Use of abrupt strain path change for determining subsequent yield surface: experimental study with metal sheets. Acta Mater. 48 (2000) 2071–2079

    Article  Google Scholar 

  132. Kuwabara, T., Nagata, K., Nakako, T.: Measurement and analysis of the Bauschinger effect of sheet metals subjected to in-plane stress reversals, In: Torralba, J. M. (ed.): Proc. AMPT’ 01, Univ. Carlos III de Madrid, Madrid (2001) 407

    Google Scholar 

  133. Kuwabara, T., Van Bael, A., Iizuka, E.: Measurement and Analysis of Yield Locus and Work hardening Characteristics of Steel Sheets with Different R-values. Acta Mater. 50 (2002) 3717–3729

    Article  Google Scholar 

  134. Kuwabara, T., Ishiki, M., Kuroda, M., Takahashi, S.: Yield Locus and Work-Hardening Behavior of a Thin-Walled Steel Tube Subjected to Combined Tension-Internal Pressure. Journal de Physique IV 105 (2003) 347–354

    Article  Google Scholar 

  135. Kuwabara, T., Yoshida, K., Narihara, K., Takahashi S.: Anisotropic plastic deformation of extruded aluminum alloy tube under axial forces and internal pressure, Int. J. Plasticity 21 (2005) 101–117

    Article  MATH  Google Scholar 

  136. Kuwabara, T.: Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations, Int. J. Plasticity 23 (2007) 385–419

    Article  MATH  Google Scholar 

  137. Lademo, O.G., Berstad, T., Hopperstad, O.S., Pedersen, K.O.: A numerical tool for formability analysis of aluminium alloys. Steel Grips 2 (2004) Suppl. Metal Forming 2004, Krakow (2004) 427–437

    Google Scholar 

  138. Lademo O.G. et al.: Prediction of plastic instability in extruded aluminium alloys using shell analysis and a coupled model of elasto-plasticity and damage. J. Materials Process. Techn. 166 (2005) 247–255

    Article  Google Scholar 

  139. Lee, D., Backofen, W.A.: An experimental determination of the yield locus for titanium and titanium-alloy sheet. Trans. TMS-AIME 236 (1966) 1077–1084

    Google Scholar 

  140. Lee W.B., Tai W.H., Tang C.Y.: Damage evolution and forming limit predictions of an AA2024-T3 aluminium alloy. J. Material Process. Techn. 63 (1997) 100–104

    Article  Google Scholar 

  141. Lemaitre, J. (ed.): Continuous damage. In: Handbook of Materials Behavior Models, Academic Press, San Diego, CA, (2001) 411–793

    Google Scholar 

  142. Lewison, DJ., Lee, D.: Determination of Forming Limits by Digital Image Processing Methods. In: Proceedings of International Body Engineering Conference and Exposition (IBEC), Detroit (MI) (1999) (Paper 01-3168)

    Google Scholar 

  143. Li, S., Hoferlin, E., Van Bael, A., Van Houtte, P.: Application of a texture-based plastic potential in earing prediction of an IF steel. Adv. Eng. Materials (2001) 990–994

    Google Scholar 

  144. Liebertz, H. et al.: Guideline for the determination of forming limit curves. In: Proc. of the IDDRG Conference, Sindelfilgen (2004) 216–224

    Google Scholar 

  145. Lin, S.B., Ding, J.L.: Experimental study of the plastic yielding of rolled sheet metals with the cruciform plate specimen. Int. J. Plasticity 11 (1995) 583–604

    Article  Google Scholar 

  146. Liu, C, Huang, Y., Stout, M.G.: On the asymmetric yield surface of plastically orthotropic materials: A phenomenological study. Acta Mater. 45 (1997) 2397–2406

    Article  Google Scholar 

  147. Logan, R.W., Hosford, W.F.: Upper-bound anisotropic yield locus calculations assuming pencil glide. Int. J. Mech. Sci. 22 (1980) 419–430

    Article  Google Scholar 

  148. Lou, X. Y., Li, M., Boger, R. K., Agnew, S. R., Wagoner, R. H.: Hardening evolution of AZ31B Mg sheet, Int. J. Plasticity 23 (2007) 44–86

    Article  MATH  Google Scholar 

  149. Lowden, M.A.W., Hutchinson, W.B.: Texture strengthening and strength differential in titanium-6A-4V. Metall.Trans. 6A (1975) 441–448

    Google Scholar 

  150. Makinde, A., Thibodeau, L., Neale, K.W.: Development of an apparatus for biaxial testing using cruciform specimens. Exp. Mech. 32 (1992) 138–144

    Article  Google Scholar 

  151. Maeda, Y., Yanagawa, M, Barlat, F., Chung, K., Hayashida, Y., Hattori, S., Matsui, K., Brem, J.C., Lege, DJ., Murtha, S.J., Ishikawa, T.: Experimental analysis of aluminum yield surface for binary Al-Mg alloy sheet samples, Int. J. Plasticity 14 (1998) 301–318

    Article  Google Scholar 

  152. Marciniak, Z., Kuczynski, K.: Limit strains in the processes of stretch forming sheet metal, Int. J. Mechan. Sciences 9 (1967) 609–620

    Article  Google Scholar 

  153. Marron, G. et al.: A new necking criterion for the Forming Limit Diagrams, IDDRG 1997 WG Meeting, Haugesund (1997)

    Google Scholar 

  154. McDowell, D. L.: Modeling and experiments in plasticity, Int. J. Solids Struct. 37 (2000) 293–309

    Article  MATH  MathSciNet  Google Scholar 

  155. McGinty, R., McDowell, D.L.: Application of multiscale crystal plasticity models to FLD. Trans. ASME., J. Eng. Mater. Techn. 126 (2004) 285–291

    Google Scholar 

  156. Mellor, P.B.: Sheet metal forming, Int. Metals Review 1 (1981) 1–20

    Google Scholar 

  157. Methods of determining the forming limit curve. IDDRG Meeting, Zurich (1983)

    Google Scholar 

  158. Michno, M. J. Jr., Findley, W. N.: An historical perspective of yield surface investigations for metals. Int. J. Non-Linear Mech. 11 (1976) 59–82

    Article  MATH  Google Scholar 

  159. Miyauchi, K.: Bauschinger effect in planar shear deformation of sheet metals, In: Advanced Technology of Plasticity, Proc. 1st Int. Conf. Technology of Plasticity, The Japan Society for Technology of Plasticity, Tokyo, (1984) 623

    Google Scholar 

  160. Müller, W., Pöhlandt, K. J.: New experiments for determining yield loci of sheet metal. J. Materials Process.Techn. 60 (1996) 643–648

    Article  Google Scholar 

  161. Nakazima, K, Kikuma, T, Hasuka, K.: Study on the formability of steel sheets. Yawata Tech. Rep. No. 284 (1971) 678–680

    Google Scholar 

  162. Nandedkar, V.M., Narashimhan, K.: Prediction of forming limits incorporating work-hardening behavior. In: Gelin, J.C., Picart, P. (eds): Proc. of the NUMISHEET 1999 Conference, Besancon (1999) 437–442

    Google Scholar 

  163. Narashimhan, K., Wagoner, R.H.: Finite Element Modeling simulation of in-plane FLD of sheets containing finite defects. Metallurgical Trans. 22A (1991) 2655–2665

    Google Scholar 

  164. Paraianu, L., Banabic, D.: Calculation of Forming Limit Diagrams Using a Finite Element Model. In: Banabic, D. (ed.): Proc. 8th ESAFORM Conference on Material Forming. Cluj-Napoca, April 2005. The Publishing House of the Romanian Academy, Bucharest (2005) 419–423

    Google Scholar 

  165. Paraianu, L., Comsa, D.S., Gracio, J.J., Banabic, D.: Influence of yield locus and strain-rate sensitivity on the Forming Limit Diagrams. In: Juster N., Rosochowski A. (eds.): Proc. 9th ESAFORM Conference on Material Forming, Glasgow, April 2006, The Publishing House AKAPIT, Krakow (2006) 343–346

    Google Scholar 

  166. Phillips, A.: A review of quasistatic experimental plasticity and viscoplasticity. Int. J. Plasticity 2 (1986) 315–328

    Article  Google Scholar 

  167. Plunkett, B., Lebensohn, R.A., Cazacu, O., Barlat, F.: Anisotropie yield function of hexagonal materials taking into account texture development and anisotropic hardening. Acta Materialia 54 (2006) 4159–4169

    Article  Google Scholar 

  168. Rajarajan G. et al.: Validation of the non-linear strain-path model CRACH to enhance the interpretation of FE simulations in multistage forming operations, In: Banabic, D. (ed.): Proc. 8th ESAFORM Conference on Material Forming. Cluj-Napoca, April 2005. The Publishing House of the Romanian Academy, Bucharest (2005) 387–390

    Google Scholar 

  169. Ragab A.R., Saleh, C.: Effect of void growth on the predicting forming limit strains for planar isotropic sheet metals. Mechanics of Materials 32 (2000) 71–84

    Article  Google Scholar 

  170. Ragab, A.R., Saleh, C., Zaafarani, N.N.: Forming limit diagrams for kinematically hardened voided sheet metals. J. Materials Process. Techn. 128 (2002) 302–312

    Article  Google Scholar 

  171. Rechberger, F., Till, E.T.: Influence of scatter of materials properties on the formability of parts. In: Kergen, R. (ed): Forming the future, Proc. IDDRG 2004 Conference, Sindelfingen (2004) 236–245

    Google Scholar 

  172. Savoie J. et al.: Prediction of the FLD using crystal plasticity model. Materials Science Eng. A257 (1998) 128–133

    Article  Google Scholar 

  173. Shakeri, M., Sadough, A., Dariani, B.M.: Effect of pre-straining and grain size on the limit strains in sheet metal forming. Proc.Instn. Mech. Engrs. 214B (2000) 821–827

    Google Scholar 

  174. Schatz, M., Keller, S., Feldmann, P.: Experimental determination of the FLD for sheet thickness from 2.5 to 5.0 mm (in German). UTF Science III (2005) 1–8

    Google Scholar 

  175. Shiratori, E., Ikegami, K.: Experimental study of the subsequent yield surface by using cross-shaped specimens. J. Mech. Phys Solids 16 (1968) 373–394

    Article  Google Scholar 

  176. Spitzig, W.A., Richmond, O.: The effect of pressure on the flow stress of metals. Acta Metall. 32 (1984) 457–463

    Article  Google Scholar 

  177. Stout, M. G., Kocks, U. F.: Effects of Texture on Plasticity. In: Kocks, U.F., Tomé, C.N., Wenk, H.-R. (eds.): Texture and Anisotropy, Cambridge University Press, Cambridge (1998) 420–465

    Google Scholar 

  178. Stoughton, T.B.: A general forming limit criterion for sheet metal forming. Int. J. Mech. Sci. 42 (2000) 1–27

    Article  MATH  Google Scholar 

  179. Stoughton, T.B., Zhu, X.: Review of theoretical models of the strain-based FLD and their relevance to the stress-based FLD. Int. J. Plasticity 20 (2004) 1463–1486

    Article  MATH  Google Scholar 

  180. Stoughton, T.B., Yoon, J.W.: Sheet metal formability analysis for anisotropic materials under non-proportional loading. Int. J. Mech. Sci. (in press)

    Google Scholar 

  181. Stören, S., Rice, J.R.: Localized necking in thin sheets. J. Mech. Phys. Solids 23 (1975) 421–441

    Article  MATH  Google Scholar 

  182. Strano, M., Colosimo, B.M.: Logistic regression analysis for experimental determination of forming limit diagrams. Int. J. Machine Tools Manuf. 46 (2006) 673–682

    Article  Google Scholar 

  183. Strano, M., Colosimo, B.M.: Ordinal logistic regression analysis for statistical determination of forming limit diagrams, In: Juster N., Rosochowski A. (eds.): Proc. 9th ESAFORM Conference on Material Forming, Glasgow, April 2006, The Publishing House AKAPIT, Krakow (2006) 303–306

    Google Scholar 

  184. Swift, H.W.: Plastic instability under plane stress. J.Mech. Phys.Sol. 1 (1952) 1–16

    Article  Google Scholar 

  185. Szczepinski, W. (ed.): Experimental Methods in Mechanics of Solids, Elsevier, Amsterdam (1990)

    Google Scholar 

  186. Tai, W.H., Lee, W.B.: Finite element simulation of in plane forming processes of sheets containing plastic damage. In: Lee, J.K., Kinzel, G.L., Wagoner, R.H. (eds): Proc. of the NUMISHEET 1996 Conference, Dearborn (1996) 257–261

    Google Scholar 

  187. Takashina, K. et al.: Relation between the manufacturing conditions and the average strain according to the scribed circle tests in steel sheets. La Metallurgia Italiana 8 (1968) 757–765

    Google Scholar 

  188. Teixeira, P. et al.: Finite element prediction of fracture onset in sheet metal forming using a ductile damage model. In: Proc. of the IDDRG 2006 Conference, Porto (2006) 239–245

    Google Scholar 

  189. Teodosiu, C., Hu, H.: Microstructure in the continuum modeling of plastic anisotropy. In: Shen, S., Dawson, P.R. (eds.): Proc. of the Conference, NUMIFORM’95 on Simulation of Materials Processing, Theory, Methods and Applications, Balkema, Rotterdam (1995) 173

    Google Scholar 

  190. Tozawa, Y.: Plastic deformation behavior under conditions of combined stress. In: Koistinen, D.P., Wang, N-.M. (eds.): Mechanics of Sheet Metal Forming. Plenum Press, New York (1978) 81–110

    Google Scholar 

  191. Van der Boogaard, A.H., Huetink, J.: Prediction of sheet necking with shell finite element models. In: Brucato, V. (ed.): Proc. 6th ESAFORM Conference on Material Forming, Salerno, April 2003, Nuova Ipsa Editore, Palermo (2003) 191–194

    Google Scholar 

  192. Van Houtte, P., Toth L.S.: Generalization of the Marciniak-Kuczynski defect model for predicting FLD. In: Lee, W.B. (ed.): Advances in Engineering Plasticity and its Application, Elsevier, Amsterdam (1993) 1013–1020

    Google Scholar 

  193. Van Houtte, P.: Application of plastic potentials to strain rate sensitive and insensitive anisotropic materials. Int. J. Plasticity 10 (1994) 719–748

    Article  MATH  Google Scholar 

  194. Van Houtte, P.: Yield loci based on crystallographic texture. In: Lemaitre, J. (ed.): Handbook of Materials Behavior Models, Academic Press, San Diego, CA (2001) 137–154

    Google Scholar 

  195. Van Houtte, P.: Anisotropy and formability in sheet metal drawing, In: Banabic, D. (ed.): Proc. 8th ESAFORM Conference on Material Forming. Cluj-Napoca, April 2005. The Publishing House of the Romanian Academy, Bucharest (2005) 339–342

    Google Scholar 

  196. Veerman, C. et al.: Determination of appearing and admissible strains in cold-reduced sheets. Sheet Metal Industries (1971) 687–694

    Google Scholar 

  197. Vegter, H., An, Y., Pijlman, H.H., Huetink, J.: Different approaches to describe the plastic material behaviour of steel and aluminium-alloys in sheet forming. In: Covas, J.A. (ed.): Proc. of the 2nd ESAFORM Conference on Material Forming. Guimaraes (1999) 127–132

    Google Scholar 

  198. Vegter, H., van den Boogaard, A.H.: A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states, Int. J. Plasticity 22 (2006) 557–580

    Article  MATH  Google Scholar 

  199. Viatkina, E.M. et al.: Forming Limit Diagrams for sheet deformation process: a crystal plasticity approach. In: Habraken, A.M. (ed.): Proc. of the 4nd ESAFORM Conference on Material Forming, Liege (2001) 465–468

    Google Scholar 

  200. Volk, W.: New experimental and numerical approach in the evaluation of the FLD with the FE-method. In: Hora, P. (ed): Numerical and experimental methods in prediction of forming limits in sheet forming and tube hydroforming processes. ETH, Zürich, (2006) 26–30

    Google Scholar 

  201. Vos, M., Banabic, D.: The Forming Limit Band — a new tool for increasing the robustness in the simulation of sheet metal forming processes. Proc. of the IDDRG 2007 Conference, Gyor (2007) (in press)

    Google Scholar 

  202. Wagoner, R.H., Chan, K.S., Keeler, S.P. (eds): Forming Limit Diagrams: Concepts, Methods, and Applications. TMS, Warrendale (1989)

    Google Scholar 

  203. Weinmann, K.J., Rosenberger, A.H., Sanchez, L.R.: The Bauschinger effect of sheet metal under cyclic reverse pure bending. Ann. CIRP 37 (1988) 289–293

    Google Scholar 

  204. Wu, P.D., Neale, K.W., Van der Giessen, E.: On crystal plasticity FLD analysis. Proc. R. Soc. London 453 (1997) 1831–1848

    Google Scholar 

  205. Wu, P.D. et al.: Crystal plasticity FLD analysis of rolled aluminium sheets. Metallurgical Trans. 29A (1998) 527–535

    Article  Google Scholar 

  206. Wu, P.D., MacEwen, S.R., Lloyd, DJ., Neale, K.W.: A mesoscopic approach for predicting sheet metal formability. Model. Simul. Mater. Sci. Eng. 12 (2004) 511–527

    Article  Google Scholar 

  207. Wu, P.D., Graf, A., MacEwen, S.R., Lloyd, DJ., Jain, M. Neale, K.W.: On forming limit stress diagram analysis. Int. J. Solids Struct. 42 (2005) 2225–2241

    Article  MATH  Google Scholar 

  208. Xu, Y.: Modern Formability: Measurement, Analysis and Applications. Hanser Gardner Publications (2006)

    Google Scholar 

  209. Yao, H., Cao, J.: Prediction of FLC using an anisotropic yield function with prestrain induced prestress. Int. J. Plasticity 18 (2002) 1013–1038

    Article  MATH  Google Scholar 

  210. Yoon, J.W., Barlat, F., Dick, R.E., Chung, K., Kang, T.J.: Plane stress yield function for aluminum alloy sheets-Part II: FE formulation and its implementation, Int. J. Plasticity 20 (2004) 495–522

    Article  MATH  Google Scholar 

  211. Yoon, J.W., Barlat, F., Dick, R.E., Karabin, M.E.: Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function. Int. J. Plasticity 22 (2006) 174–193

    Article  MATH  Google Scholar 

  212. Yoon, J.W., Barlat, F.: Modeling and simulation of the forming of aluminium sheet alloys, In: Semiatin, S.L. (ed): ASM Handbook, Vol 14B, Metalworking: Sheet forming, ASM International, Materials Park, OH (2006) 792–826

    Google Scholar 

  213. 213.Yoshida, F., Urabe, M., Toropov, V.V.: Identification of material parameters in constitutive model for sheet metals from cyclic bending tests. Int. J. Mech. Sci. 40 (1998) 237–249

    Article  Google Scholar 

  214. Yoshida, F., Uemori, T., Fujiwara, K.: Elastic-plastic behavior of steel sheets under in-plane cyclic tension-compression at large strain, Int. J. Plasticity 18 (2002) 633–659

    Article  MATH  Google Scholar 

  215. Yoshida, K., Kuwabara, T., Narihara, K., Takahashi S.: Experimental verification of the path-independence of forming limit stresses, Int. J. Forming Processes 8 (SI) (2005) 283–298

    Google Scholar 

  216. Yoshida, K, Kuwabara, T., Kuroda, M.: Path-dependence of the forming limit stresses in a sheet metal, Int. J. Plasticity 23 (2007) 361–384

    Article  MATH  Google Scholar 

  217. Yoshida, K., Kuwabara, T.: Effect of strain hardening behavior on forming limit stresses of steel tube subjected to non-proportional loading paths. Int. J. Plasticity (2007) (in press)

    Google Scholar 

  218. Yu, M.H.: Advances in strength theories for materials under complex stress state in the 20th Century. Appl. Mech. Rev. 55 (2002) 198–218

    Article  Google Scholar 

  219. Zhou, D., Wagoner R.H.: Use of arbitrary yield function in FEM. In: Boehler, J.P., Khan, A.S. (eds): Anisotropy and localization of plastic deformation. Elsevier, Amsterdam (1991) 688–691

    Google Scholar 

  220. Zhou, Y., Neale K.W.: Predictions of FLD using a rate sensitive crystal plasticity model, Int. J. Mech. Sciences 37 (1995) 1–20

    Article  MATH  Google Scholar 

  221. Zyczkowski, M.: Combined Loadings in the Theory of Plasticity, Polish Scientific Publisher, Warsaw (1981)

    MATH  Google Scholar 

  222. Zyczkowski, M.: Anisotropic yield condition. In: Handbook of Materials Behaviour Models. Lemaitre, J. (ed.): Academic Press, San Diego CA (2001) 155–165

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this paper

Cite this paper

Banabic, D., Barlat, F., Cazacu, O., Kuwabara, T. (2007). Anisotropy and Formability. In: Advances in Material Forming. Springer, Paris. https://doi.org/10.1007/978-2-287-72143-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-72143-4_9

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-72142-7

  • Online ISBN: 978-2-287-72143-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics