Skip to main content

Myocardial Protection from Ischemia and Reperfusion Injury

  • Chapter
Acute Heart Failure

Abstract

Prolonged and unresolved interruption of blood supply to the myocardium without reperfusion ultimately causes myocyte cell death. Early restoration of blood flow to the ischemic myocardium is therefore necessary to prevent myocardial cell death to occur. However, reperfusion itself may lead to additional tissue injury beyond that generated by the ischemic event. This phenomenon is called reperfusion injury and it may manifest as arrhythmias, reversible contractile dysfunction (myocardial stunning), endothelial dysfunction, and ultimately irreversible reperfusion injury with myocardial cell death. Irreversible reperfusion injury is defined as the injury caused by restoration of blood flow after an ischemic episode leading to the death of cells that were only reversibly injured during the preceding ischemic period (Fig. 9.1). This lethal reperfusion injury may result from two mechanisms: necrosis and apoptosis. Therefore, treatment of myocardial ischemia not only should be directed toward a prompt restoration of blood flow to the ischemic area but also should include measures to prevent or minimize the extent of reperfusion injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Park JL, Lucchesi BR. Mechanisms of myocardial reperfusion injury. Ann Thorac Surg 1999;68:1905–12.

    Article  CAS  PubMed  Google Scholar 

  2. Kloner RA, Deboer LWV, Darsee JR, et al. Prolonged abnormalities of myocardium salvages by reperfusion. Am J Physiol 1981;241:H591–9.

    CAS  PubMed  Google Scholar 

  3. Ellis SG, Henschke CI, Sandor T, et al. Time course of functional and biochemical recovery of myocardium salvaged by reperfusion. J Am Coll Cardiol 1983;1:1047–55.

    CAS  PubMed  Google Scholar 

  4. Przyklenk K, Kloner RA. Superoxide dismutase plus catalase improve contractile function in the canine model of “stunned” myocardium. Circ Res 1986;58:148–56.

    CAS  PubMed  Google Scholar 

  5. Ambrosio G, Jacobus WE, Mitchell MC, et al. Effects of ATP precursors on ATP and free ADP content and functional recovery of postischemic hearts. Am J Physiol 1989;256:H560–6.

    CAS  PubMed  Google Scholar 

  6. Kusuoka H, Marban E. Cellular mechanisms of myocardial stunning. Annu Rev Physiol 1992;54:243–56.

    Article  CAS  PubMed  Google Scholar 

  7. Gross GJ, Kersten JR, Warltier DC. Mechanisms of postischemic contractile dysfunction. Ann Thorac Surg 1999:68:1898–904.

    Article  CAS  PubMed  Google Scholar 

  8. Myers ML, Bolli R, Lekich RF, et al. Enhancement of recovery of myocardial function by oxygen free-radical scavengers after reversible regional ischemia. Circulation 1985;72:915–21.

    CAS  PubMed  Google Scholar 

  9. Gross GJ, Farber NE, Hardman HF, et al. Beneficial actions of superoxide dismutase and catalase in stunned myocardium of dogs. Am J Physiol 1986;250:H372–7.

    CAS  PubMed  Google Scholar 

  10. Joly SR, Kane WJ, Bailie MB, et al. Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. Circ Res 1984;54:277–85.

    Google Scholar 

  11. Zweier JL, Flaherty JT, Weisfeldt ML. Direct measurements of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA 1987;84:1404–7.

    Article  CAS  PubMed  Google Scholar 

  12. Bolli R, Patel BS, Jeroudi MO, et al. Demonstration of free radical generation in “stunned” myocardium of intact dogs with the use of the spin trap α-phenyl-N-tertbutyl nitrone. J Clin Invest 1988;82:476–85.

    Article  CAS  PubMed  Google Scholar 

  13. Ambrosio G, Zweier JL, Flaherty JT. The relationship between oxygen radical generation and impairment of myocardial energy metabolism following post-ischemic reperfusion. J Mol Cell Cardiol 1991;23:1359–74.

    Article  CAS  PubMed  Google Scholar 

  14. Khalid MA, Ashraf M. Direct detection of endogenous hydroxyl radical production in adult cardiomyocytes during anoxia and reoxygenation: is the hydroxyl radical really the most important species? Circ Res 1993;72:725–36.

    CAS  PubMed  Google Scholar 

  15. Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res 2004;61:461–70.

    Article  CAS  PubMed  Google Scholar 

  16. Piper HM, Garcia-Dorado D. Prime causes of rapid cardiomyocyte death during reperfusion. Ann Thorac Surg 1999;68:1913–9.

    Article  CAS  PubMed  Google Scholar 

  17. Eagler R, Covell JW. Granulocytes cause reperfusion ventricular dysfunction after 15-minute ischemia in the dog. Circ Res 1987;61:20–8.

    Google Scholar 

  18. Westlin W, Mullane KM. Alleviation of myocardial stunning by leucocyte and platelet depletion. Circulation 1989;80:1828–36.

    CAS  PubMed  Google Scholar 

  19. Jeremy RW, Becker LC. Neutrophil depletion does not prevent myocardial dysfunction after brief coronary occlusion. J Am Coll Cardiol 1989;13:1155–63.

    CAS  PubMed  Google Scholar 

  20. O’Neill PG, Charlat ML, Michael LH, et al. Influence of neutrophil depletion on myocardial function and flow after reversible ischemia. Am J Physiol 1989;256:H341–51.

    PubMed  Google Scholar 

  21. Juneau CF, Ito BR, del Balzo U, et al. Severe neutrophil depletion by leucocyte filters or cytotoxic drugs does not improve recovery of contractile function in stunned porcine myocardium. Cardiovasc Res 1993;27:720–7.

    Article  CAS  PubMed  Google Scholar 

  22. Becker LC. Do neutrophils contribute to myocardial stunning? Cardiovasc Drug Ther 1991;5:909–13.

    Article  CAS  Google Scholar 

  23. Bolli R. Role of neutrophils in myocardial stunning after brief ischemia: the end of a six old controversy (1987–1993). Cardiovasc Res 1993;27:728–30.

    Article  CAS  PubMed  Google Scholar 

  24. Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res 2004;61:481–97.

    Article  CAS  PubMed  Google Scholar 

  25. Vakeva AP, Agah A, Rollins SA, et al. Myocardial infarction and apoptosis after myocardial ischemia and reperfusion. Role of the terminal complement components and inhibition by anti-C5 therapy. Circulation 1998;97:2259–67.

    CAS  PubMed  Google Scholar 

  26. Dörge H, Schulz R, Belosjorow S, et al. Coronary microembolization: the role of TNF-α in contractile dysfunction. J Mol Cell Cardiol 2002;34:51–62.

    Article  PubMed  CAS  Google Scholar 

  27. Forman MB, Puett DW, Virmani R. Endothelial and myocardial injury during ischemia and reperfusion: pathogenesis and therapeutic implications. J Am Coll Cardiol 1989;13:450–9.

    Article  CAS  PubMed  Google Scholar 

  28. Lefer AM, Weyrich AS, Buerke M. Role of selectins, a new family of adhesion molecules, in ischemia-reperfusion injury. Cardiovasc Res 1994;28:289–94.

    Article  CAS  PubMed  Google Scholar 

  29. Lefer AM. Role of selectins in myocardial ischemia-reperfusion injury. Ann Thorac Surg 1995;60:773–7.

    Article  CAS  PubMed  Google Scholar 

  30. Weyrich AC, Buerke M, Albertine KH, et al. Time course of coronary vascular endothelial adhesion molecule expression during reperfusion of the ischemic feline myocardium. J Leukoc Biol 1995;57:45–55.

    CAS  PubMed  Google Scholar 

  31. Zhao Z-Q, Velez DA, Wang N-P, et al. Progressively developed myocardial apoptotic cell death during late phase of reperfusion. Apoptosis 2001;6:279–90.

    Article  CAS  PubMed  Google Scholar 

  32. Collard CD, Gelman S. Pathophysiology, clinical manifestations, and prevention of ischemiareperfusion injury. Anesthesiology 2001;94:1133–8.

    Article  CAS  PubMed  Google Scholar 

  33. McEver RP, Cummings RD. Role of PSGL-1 binding to selectins in leucocyte recruitment. J Clin Invest 1997;100:485–92.

    Article  CAS  PubMed  Google Scholar 

  34. Bienvenu K, Granger DN. Molecular determinants of shear rate-dependent leucocyte adhesion in postcapillary venules. Am J Physiol 1993;264:H1504–8.

    CAS  PubMed  Google Scholar 

  35. Entman ML, Youker K, Shappell SB, et al. Neutrophil adherence to isolated adult canine myocytes. Evidence for a CD18-dependent mechanism. J Clin Invest 1990;85:1497–506.

    Article  CAS  PubMed  Google Scholar 

  36. Entman ML, Youker K, Shoji T, et al. Neutrophil induced oxidative injury of cardiac myocytes. A compartmented system requiring CD11b/CD18—ICAM-1 adherence. J Clin Invest 1992;90:1335–45.

    Article  CAS  PubMed  Google Scholar 

  37. Reimer KA, Murry CE, Richard VJ. The role of neutrophils and free radicals in the ischemic-reperfused heart: why the confusion and controversy? J Mol Cell Cariol 1989;21:1225–39.

    Article  CAS  Google Scholar 

  38. Chatelain P, Latour J-G, Tran D, et al. Neutrophil accumulation in experimental myocardial infarcts: relation with extent of injury and effect of reperfusion. Circulation 1987;75:1083–90.

    CAS  PubMed  Google Scholar 

  39. Murohara T, Buerke M, Lefer AM. Polymorphonuclear leukocyte-induced vasoconstriction and endothelial dysfunction. Role of selectins. Arterioscler Thromb 1994;14:1509–19.

    CAS  PubMed  Google Scholar 

  40. Sheridan FM, Cole PG, Ramage D. Leucocyte adhesion to the coronary microvasculature during ischemia and reperfusion in an vivo canine model. Circulation 1996;93:1784–7.

    CAS  PubMed  Google Scholar 

  41. Zhao Z-Q, Nakamura M, Wang N-P, et al. Dynamic progression of contractile and endothelial dysfunction and infarct extension in the late phase of reperfusion. J Surg Res 2000;94:1–12.

    Article  Google Scholar 

  42. Siegmund B, Schlack W, Ladilov YV, et al. Halothane protects cardiomyocytes against reoxygenation-induced hypercontracture. Circulation 1997;96:4372–9.

    CAS  PubMed  Google Scholar 

  43. Piper HM, Garcia-Dorado D, Ovize M. A fresh look at reperfusion injury. Cardiovasc Res 1998;38:291–300.

    Article  CAS  PubMed  Google Scholar 

  44. Schäfer C, Ladilov YV, Inserte J, et al. Role of the reverse mode of the Na+/Ca2+ exchanger in reoxygenation-induced cardiomyocyte injury. Cardiovasc Res 2001;51:241–50.

    Article  PubMed  Google Scholar 

  45. Piper HM, Abdallah Y, Schäfer C. The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res 2004;61:365–71.

    Article  CAS  PubMed  Google Scholar 

  46. Siegmund B, Zude R, Piper HM. Recovery of anoxic-reoxygenated cardiomyocytes from severe Ca2+ overload. Am J Physiol 1992;263:H1262–9.

    CAS  PubMed  Google Scholar 

  47. Ladilov YV, Siegmund B, Piper HM. Simulated ischemia increases the susceptibility of rat cardiomyocytes to hypercontracture. Circ Res 1997;80:69–75.

    CAS  PubMed  Google Scholar 

  48. Carrozza JP, Bentivegna LA, Williams CP, et al. Decreased myofilament responsiveness in myocardial stunning follows transient calcium overload during ischemia and reperfusion. Circ Res 1992;71:1334–40.

    CAS  PubMed  Google Scholar 

  49. Hofmann PA, Miller WP, Moss RL. Altered calcium sensitivity of isometric tension in myocyte-sized preparations of porcine postischemic stunned myocardium. Circ Res 1993;72:50–6.

    CAS  PubMed  Google Scholar 

  50. Miller WP, McDonald KS, Moss RL. Onset of reduced Ca2+ sensitivity of tension during stunning in porcine myocardium. J Mol Cell Cardiol 1996;28:689–97.

    Article  CAS  PubMed  Google Scholar 

  51. Gao WD, Liu Y, Mellgren R, et al. Intrinsic myo-filament alterations underlying the decreased contractility of stunned myocardium. A consequence of Ca2+-dependent proteolysis? Circ Res 1996;78:455–65.

    CAS  PubMed  Google Scholar 

  52. Gao WD, Atar D, Liu Y, et al. Role of troponin I proteolysis in the pathogenesis of stunned myocardium. Circ Res 1997;80:393–9.

    CAS  PubMed  Google Scholar 

  53. Gao WD, Liu Y, Marban E. Selective effects of oxygen free radicals on excitation-contraction coupling in ventricular muscle. Implications for the mechanism of stunned myocardium. Circulation 1996;94:2597–604.

    CAS  PubMed  Google Scholar 

  54. Piper HM, Balser C, Ladyloc YV, et al. The role of Na+/H+ exchange in ischemia-reperfusion. Basic Res Cardiol 1996;91:191–202.

    Article  CAS  PubMed  Google Scholar 

  55. Ladilov YV, Siegmund B, Piper HM. Protection of the reoxygenated cardiomyocyte against hypercontracture by inhibition of the Na+/H+ exchange. Am J Physiol 1995;268:H1531–9.

    CAS  PubMed  Google Scholar 

  56. Garcia-Dorado D, Oliveras J. Myocardial edema: a preventable cause of reperfusion injury. Cardiovasc Res 1993;27:1555–63.

    Article  CAS  PubMed  Google Scholar 

  57. Inserte J, Garcia-Dorado D, Ruiz-Meana M, et al. The Na+/H+ exchange occurring during hypoxia in the genesis of reoxygenation-induced myocardial oedema. J Mol Cell Cardiol 1997;29:1167–75.

    Article  CAS  PubMed  Google Scholar 

  58. Ruiz-Meana M, Garcia-Dorado, Gonzales MA, et al. Effect of osmotic stress on sarcolemmal integrity of isolated cardiomyocytes following transient metabolic inhibition. Cardiovasc Res 1995;30:64–9.

    CAS  PubMed  Google Scholar 

  59. Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc Res 2004;61:372–85.

    Article  CAS  PubMed  Google Scholar 

  60. Gottlieb RA, Burleson KO, Kloner RA, et al. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 1994;94:1621–8.

    Article  CAS  PubMed  Google Scholar 

  61. Veinot JP, Gattinger DA, Fliss H. Early apoptosis in human myocardial infarcts. Hum Pathol 1997;28:485–92.

    Article  CAS  PubMed  Google Scholar 

  62. Saraste A, Pulkki K, Kallajoki M, et al. Apoptosis in human acute myocardial infarction. Circulation 1997;95:320–3.

    CAS  PubMed  Google Scholar 

  63. Zhao Z-Q, Vinten-Johansen J. Myocardial apoptosis and ischemic preconditioning. Cardiovasc Res 2002;55:438–55.

    Article  CAS  PubMed  Google Scholar 

  64. Valen G. The basic biology of apoptosis and its implications for cardiac function and viability. Ann Thorac Surg 2003;75:S656–60.

    Article  PubMed  Google Scholar 

  65. Miller TD, Christian TF, Hopfenspirger MR, et al. Infarct size after acute myocardial infarction measured by quantitative tomographic 99mTc sestamibi imaging predicts subsequent mortality. Circulation 1995;92:334–41.

    CAS  PubMed  Google Scholar 

  66. Maroko PR, Kjekshus JK, Sobel BE, et al. Factors influencing infarct size following experimental coronary artery occlusions. Circulation 1971;43:67–82.

    CAS  PubMed  Google Scholar 

  67. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay in lethal injury in ischemic myocardium. Circulation 1986;74:1124–36.

    CAS  PubMed  Google Scholar 

  68. Kloner RA, Jennings RB. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications. Part 1. Circulation 2001;104:2981–9.

    Article  CAS  PubMed  Google Scholar 

  69. Kloner RA, Jennings RB. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications. Part 2. Circulation 2001;104:3158–67.

    Article  CAS  PubMed  Google Scholar 

  70. Laude K, Beauchamp P, Tuillez C, et al. Endothelial protective effects of preconditioning. Cardiovasc Res 2002;55:466–73.

    Article  CAS  PubMed  Google Scholar 

  71. Fryer RM, Auchampach JA, Gross GJ. Therapeutic receptor targets of ischemic preconditioning. Cardiovasc Res 2002;55:520–5.

    Article  CAS  PubMed  Google Scholar 

  72. Sommerschild HT, KirkebØen KA. Preconditioning—endogenous defence mechanisms of the heart. Acta Anaesthesiol Scand 2002;46:123–37.

    Article  CAS  PubMed  Google Scholar 

  73. Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 2003;83:1113–51.

    CAS  PubMed  Google Scholar 

  74. Deutsch E, Berger M, Kussmaul WG, et al. Adaptation to ischemia during percutaneous transluminal angioplasty. Clinical, hemodynamic, and metabolic features. Circulation 1990;82:2044–51.

    CAS  PubMed  Google Scholar 

  75. Kloner RA, Shook T, Przyklenk K, et al. Previous angina alters in-hospital outcome in TIMI 4. A clinical correlate to preconditioning? Circulation 1995;91:37–45.

    CAS  PubMed  Google Scholar 

  76. Laskey WK. Beneficial impact of preconditioning during PTCA on creatine kinase release. Circulation 1999;99:2085–9.

    CAS  PubMed  Google Scholar 

  77. Ottani F, Galvani M, Ferrini D, et al. Prodromal angina limits infarct size. A role for ischemic preconditioning. Circulation 1995;91:291–7.

    CAS  PubMed  Google Scholar 

  78. Perrault LP, Menasché P, Bel A, et al. Ischemic preconditioning in cardiac surgery: a word of caution. J Thorac Cardiovasc Surg 1996;112:1378–86.

    Article  CAS  PubMed  Google Scholar 

  79. Jenkins DP, Pugsley WB, Alkhulaifi AM, et al. Ischaemic preconditioning reduces troponin T release in patients undergoing coronary artery bypass surgery. Heart 1997;77:314–8.

    CAS  PubMed  Google Scholar 

  80. Jacobson E, Young CJ, Aronson S, et al. The role of ischemic preconditioning during minimally invasive coronary artery bypass surgery. J Cardiothorac Vasc Anesth 1997;11:787–92.

    Article  Google Scholar 

  81. Illes RW, Swoyer KD. Prospective, randomized clinical study of ischemic preconditioning as an adjunct to intermittent cold blood cardioplegia. Ann Thorac Surg 1998;65:748–52.

    Article  CAS  PubMed  Google Scholar 

  82. Lu EX, Chen SX, Hu TH, et al. Preconditioning enhances myocardial protection in patients undergoing open heart surgery. Thorac Cardiovasc Surg 1998;46:28–32.

    Article  CAS  PubMed  Google Scholar 

  83. Lucchetti V, Caputo M, Suleiman MS, et al. Beating heart coronary revascularization without metabolic myocardial damage. Eur J Cardiothorac Surg 1998;14:443–4.

    Article  CAS  PubMed  Google Scholar 

  84. Malkowski MJ, Kramer CM, Parvizi ST, et al. Transient ischemia does not limit subsequent ischemic regional dysfunction in humans: a transesophageal echocardiographic study during minimally invasive coronary artery bypass surgery. J Am Coll Cardiol 1998;31:1035–9.

    Article  CAS  PubMed  Google Scholar 

  85. Laurikka J, WU Z-K, Lisalo P, et al. Regional ischemic preconditioning enhances myocardial performance in off-pump coronary artery bypass grafting. Chest 2002;121:1183–9.

    Article  PubMed  Google Scholar 

  86. Vaage J, Valen G. Preconditioning and cardiac surgery. Ann Thorac Surg 2003;75:S709–14.

    Article  PubMed  Google Scholar 

  87. Ross S, Foëx P. Protective effects of anaesthetics in reversible and irreversible ischaemia-reperfusion injury. Br J Anaesth 1999;82:622–32.

    CAS  PubMed  Google Scholar 

  88. Zaugg M, Lucchinetti E, Uecker M, et al. Anaesthetics and cardiac preconditioning. Part 1. Signalling and cytoprotective mechanisms. Br J Anaesth 2003;91:552–65.

    Google Scholar 

  89. Zaugg M, Lucchinetti E, Garcia C, et al. Anaesthetics and cardiac preconditioning. Part 2. Clinical implications. Br J Anaesth 2003;91:566–76.

    Article  CAS  PubMed  Google Scholar 

  90. De Hert SG. Cardioprotection with volatile anaesthetics: clinical relevance. Curr Opin Anaesthesiol 2004;17:57–62.

    Article  PubMed  Google Scholar 

  91. Tanaka K, Ludwig LM, Kersten JR, et al. Mechanisms of cardioprotection by volatile anesthetics. Anesthesiology 2004;100:707–21.

    Article  CAS  PubMed  Google Scholar 

  92. De Hert SG, Turani F, Mathur S, et al. Cardioprotection with volatile anesthetics: mechanisms and clinical implications. Anesth Analg 2005;100:1584–93.

    Article  PubMed  Google Scholar 

  93. De Hert SG. The concept of anaesthetic-induced cardioprotection: clinical relevance. Best Pract Res Clin Anaesthesiol 2005;19:445–59.

    Article  PubMed  CAS  Google Scholar 

  94. De Hert SG, Van der Linden PJ, Cromheecke S, et al. Choice of primary anesthetic regimen can influence intensive care unit length of stay after coronary surgery with cardiopulmonary bypass. Anesthesiology 2004;101:9–20.

    Article  PubMed  Google Scholar 

  95. Garcia C, Julier K, Bestmann L, et al. Preconditioning with sevoflurane decreases PECAM-1 expression and improves one-year cardiovascular outcome in coronary artery bypass graft surgery. Br J Anaesth 2005;94:159–65.

    Article  CAS  PubMed  Google Scholar 

  96. Taegtmeyer H. Energy metabolism of the heart: from basic concepts to clinical implications. Curr Probl Cardiol 1994;19:59–113.

    Article  CAS  PubMed  Google Scholar 

  97. Stanley WC, Lopaschuk GD, Hall JL, et al. Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res 1997;33:243–57.

    Article  CAS  PubMed  Google Scholar 

  98. Ferrari R, Pepi P, Ferrari F, et al. Metabolic derangement in ischemic heart disease and its therapeutic control. Am J Cardiol 1998;82:K2–13.

    Article  Google Scholar 

  99. Lopaschuk GD. Treating ischemic heart disease by pharmacologically improving cardiac energy metabolism. Am J Cardiol 1998;82:K14–17.

    Article  Google Scholar 

  100. Taegtmeyer H, King LM, Jones BE. Energy substrate metabolism, myocardial ischemia, and targets for pharmacotherapy. Am J Cardiol 1998;82:K54–60.

    Article  Google Scholar 

  101. Lee L, Horowitz J, Frenneaux M. Metabolic manipulation in ischaemic heart disease, a novel approach to treatment. Eur Heart J 2004;25:634–41.

    Article  CAS  PubMed  Google Scholar 

  102. Sack MN, Yellon DM. Insulin therapy as an adjunct to reperfusion after acute coronary ischemia. A proposed direct myocardial cell survival effect independent of metabolic modulation. J Am Coll Cardiol 2003;41:1404–7.

    Article  CAS  PubMed  Google Scholar 

  103. Fath-Ordoubadi F, Beatt KJ. Glucose-insulin-potassium therapy for treatment of acute myocardial infarction: an overview of randomized placebo-controlled trials. Circulation 1997;96:1152–6.

    CAS  PubMed  Google Scholar 

  104. Diaz R, Paolasso EA, Piegas LS, et al. Metabolic modulation of acute myocardial infarction. The ECLA Collaborative Group. Circulation 1998;98:2227–34.

    CAS  PubMed  Google Scholar 

  105. Apstein CS, Opie LH. Glucose-insulin-potassium (GIK) for acute myocardial infarction: a negative study with a positive value. Cardiovasc Drug Ther 1999;13:185–90.

    Article  CAS  Google Scholar 

  106. Ceremuzynski L, Budaj A, Czepiel A, et al. Lowdose glucose-insulin-potassium is ineffective in acute myocardial infarction: results of a randomized multicenter Pol-GIK trial. Cardiovasc Drugs Ther 1999;13:191–200.

    Article  CAS  PubMed  Google Scholar 

  107. van der Horst ICC, Zijstra F, van’t Hof AWJ, et al. Glucose-insulin-potassium infusion in patients treated with primary angioplasty for acute myocardial infarction. J Am Coll Cardiol 2003;42:784–91.

    Article  PubMed  CAS  Google Scholar 

  108. Apstein CS. The benefits of glucose-insulin-potassium for acute myocardial infarction (and some concerns). J Am Coll Cardiol 2003;42:792–5.

    Article  PubMed  Google Scholar 

  109. Nicolini F, Beghi C, Muscari C, et al. Myocardial protection in adult cardiac surgery: current options and future challenges. Eur J Cardiothorac Surg 2003;24:986–93.

    Article  PubMed  Google Scholar 

  110. Doenst T, Bothe W, Beyersdorf F. Therapy with insulin in cardiac surgery: controversies and possible solutions. Ann Thorac Surg 2003;75:S721–8.

    Article  PubMed  Google Scholar 

  111. Forman MB, Velasco CE. Role of adenosine in the treatment of myocardial stunning. Cardiovasc Drugs Ther 1991;5:901–8.

    Article  CAS  PubMed  Google Scholar 

  112. Mubagwa K, Flameng W. Adenosine, adenosine receptors and myocardial protection: an updated review. Cardiovasc Res 2001;52:25–39.

    Article  CAS  PubMed  Google Scholar 

  113. Obata T. Adenosine production and its interaction with protection of ischemic and reperfusion injury of the myocardium. Life Sciences 2002;71:2083–103.

    Article  CAS  PubMed  Google Scholar 

  114. Donato M, Gelpi RJ. Adenosine and cardioprotection during reperfusion—an overview. Mol Cell Biochem 2003;251:153–9.

    Article  CAS  PubMed  Google Scholar 

  115. Vinten-Johansen J, Zhao Z-Q, Corvera JS, et al. Adenosine in myocardial protection in on-pump and off-pump cardiac surgery. Ann Thorac Surg 2003;75:S691–9.

    Article  PubMed  Google Scholar 

  116. Bolli R. Oxygen-derived free radicals and postischemic myocardial dysfunction (“stunned myocardium”). J Am Coll Cardiol 1988;12:239–49.

    Article  CAS  PubMed  Google Scholar 

  117. Kukreja RC, Janin Y. Reperfusion injury: basic concepts and protection strategies. J Thromb Thrombolysis 1997;4:7–24.

    Article  PubMed  Google Scholar 

  118. Wang Q-D, Pernow J, Sjöquist P-O, et al. Pharmacological possibilities for protection against myocardial reperfusion injury. Cardiovasc Res 2002;55:25–37.

    Article  CAS  PubMed  Google Scholar 

  119. Hansen PR. Role of neutrophils in myocardial ischemia and reperfusion. Circulation 1995;91:1872–85.

    CAS  PubMed  Google Scholar 

  120. Jordan JE, Zhao Z-Q, Vinten-Johansen J. The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovasc Res 1999;43:860–78.

    Article  CAS  PubMed  Google Scholar 

  121. Bull DA, Maurer J. Aprotinin and preservation of myocardial function after ischemia-reperfusion injury. Ann Thorac Surg 2003;75:S735–9.

    Article  PubMed  Google Scholar 

  122. Garcia-Dorado D, Theroux D, Fernandez-Aviles F, et al. Diltiazem and progression of myocardial ischemic damage during coronary artery occlusion and reperfusion in porcine hearts. J Am Coll Cardiol 1987;10:906–11.

    Article  CAS  PubMed  Google Scholar 

  123. Vatner SF, Patrick TA, Knight DR, et al. Effects of calcium channel blocker on responses of blood flow, function, arrhythmias, and extent of infarction following reperfusion in conscious baboons. Circ Res 1988;62:105–15.

    CAS  PubMed  Google Scholar 

  124. Herzog WR, Vogel RA, Schlossberg ML, et al. Short-term low dose intracoronary diltiazem administered at the onset of reperfusion reduces myocardial infarct size. Int J Cardiol 1997;59:21–7.

    Article  CAS  PubMed  Google Scholar 

  125. Smart SC, Sagar KB, Warltier DC. Differential roles of myocardial Ca2+ channels and Na+/Ca2+ exchange in myocardial reperfusion injury in open chest dogs: relative roles during ischemia and reperfusion. Cardiovasc Res 1997;36:337–46.

    Article  CAS  PubMed  Google Scholar 

  126. Schlack W, Hollmann M, Stunneck J, et al. Effect of halothane on myocardial reoxygenation injury in the isolated rat heart. Br J Anaesth 1996;76:860–7.

    CAS  PubMed  Google Scholar 

  127. Mentzer RM, Lasley RD, Jessel A, et al. Intracellular sodium hydrogen exchange inhibition and clinical myocardial protection. Ann Thorac Surg 2003;75:S700–8.

    Article  PubMed  Google Scholar 

  128. Bolli R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol 2001;33:1897–918.

    Article  CAS  PubMed  Google Scholar 

  129. Schulz R, Kelm M, Heusch G. Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 2004;61:402–13.

    Article  CAS  PubMed  Google Scholar 

  130. Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 2004;61:448–60.

    Article  CAS  PubMed  Google Scholar 

  131. Bolli R, Becker L, Gross G, et al. Myocardial protection at a crossroads: the need for translation into clinical therapy. Circ Res 2004;95:125–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

De Hert, S.G. (2008). Myocardial Protection from Ischemia and Reperfusion Injury. In: Mebazaa, A., Gheorghiade, M., Zannad, F.M., Parrillo, J.E. (eds) Acute Heart Failure. Springer, London. https://doi.org/10.1007/978-1-84628-782-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-782-4_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-781-7

  • Online ISBN: 978-1-84628-782-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics